It has been reported that application of pulsed biases in arc ion plating could effectively eliminate droplet particles. The present paper aims at experimental verification of a physical model proposed previously by u...It has been reported that application of pulsed biases in arc ion plating could effectively eliminate droplet particles. The present paper aims at experimental verification of a physical model proposed previously by us which is based on particle charging and repulsion in the pulsed plasma sheath. An orthogonal experiment was designed for this purpose, using the electrical parameters of the pulsed bias for the deposition of TiN films on stainless steel substrates. The effect of these parameters on the amount and the size distribution of the particles were analyzed, and the results provided sufficient evidence for the physical model.展开更多
Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case ...Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.展开更多
With carbon extraction replica technique, electron diffraction and EDAX analysis, second particle size distribution in two Ti microalloyed steels and their heat-affected zones were investigated. The results show that ...With carbon extraction replica technique, electron diffraction and EDAX analysis, second particle size distribution in two Ti microalloyed steels and their heat-affected zones were investigated. The results show that the particles in the Ti microalloyed steels are TiN particles, and the TiN particles in the steel with lower Ti/N ratio exhibit smaller size and lower dissolution and coarsening rate and extent. Based on the investigation results, kinetic models for TiN particle dissolution and coarsening during welding thermal cycle were developed. The predicted values calculated by using the models are in good agreement with the experimental ones.展开更多
A detailed mineralogical characterization of a tin-polymetallic ore from Mengzi,Yunnan Province,China,was undertaken by automated electron microprobe-based mineral mapping and quantitative analysis methods.The results...A detailed mineralogical characterization of a tin-polymetallic ore from Mengzi,Yunnan Province,China,was undertaken by automated electron microprobe-based mineral mapping and quantitative analysis methods.The results show that the most valuable metal is Sn(0.98%,mass fraction).The main tin minerals are cassiterite and stannite,which account for 94.90% of total tin.Other metals,such as Cu(0.261%),Zn(0.612%) and Pb(0.296%) can also be seen as valuable metal to be recovered.Minerals such as pyrrhotite,pyrite,arsenopyrite,sphalerite,galena and chalcopyrite are disseminated in the ore.Quartz,sericite and dolomite are the main gangue.The optimal grinding fineness should be chosen as 0.037 mm to make sure that most of the tin minerals can be liberated from other minerals.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.50071017)the National High-Tech Program of China(No.2002A A302507).
文摘It has been reported that application of pulsed biases in arc ion plating could effectively eliminate droplet particles. The present paper aims at experimental verification of a physical model proposed previously by us which is based on particle charging and repulsion in the pulsed plasma sheath. An orthogonal experiment was designed for this purpose, using the electrical parameters of the pulsed bias for the deposition of TiN films on stainless steel substrates. The effect of these parameters on the amount and the size distribution of the particles were analyzed, and the results provided sufficient evidence for the physical model.
基金supported by the National Natural Science Foundation of China under grant No.50801062
文摘Orthogonal experiments are used to design the pulsed bias related parameters, including bias magnitude, duty cycle and pulse frequency, during arc ion deposition of TiN films on stainless steel substrates in the case of samples placing normal to the plasma flux. The effect of these parameters on the amount and the size distribution of droplet-particles are investigated, and the results have provided sufficient evidence for the physical model, in which particles reduction is due to the case that the particles are negatively charged and repulsed from negative pulse electric field. The effect of sample configuration on amount and size distribution of the particles are analyzed. The results of the amount and size distribution of the particles are compared to those in the case of samples placing parallel to the plasma flux.
基金The authors appreciate the financial support of the Fund for Doctor of Shandong University.
文摘With carbon extraction replica technique, electron diffraction and EDAX analysis, second particle size distribution in two Ti microalloyed steels and their heat-affected zones were investigated. The results show that the particles in the Ti microalloyed steels are TiN particles, and the TiN particles in the steel with lower Ti/N ratio exhibit smaller size and lower dissolution and coarsening rate and extent. Based on the investigation results, kinetic models for TiN particle dissolution and coarsening during welding thermal cycle were developed. The predicted values calculated by using the models are in good agreement with the experimental ones.
基金Project(50774094) supported by the National Natural Science Foundation of ChinaProject(2010CB630905) supported the National Basic Research Program of China
文摘A detailed mineralogical characterization of a tin-polymetallic ore from Mengzi,Yunnan Province,China,was undertaken by automated electron microprobe-based mineral mapping and quantitative analysis methods.The results show that the most valuable metal is Sn(0.98%,mass fraction).The main tin minerals are cassiterite and stannite,which account for 94.90% of total tin.Other metals,such as Cu(0.261%),Zn(0.612%) and Pb(0.296%) can also be seen as valuable metal to be recovered.Minerals such as pyrrhotite,pyrite,arsenopyrite,sphalerite,galena and chalcopyrite are disseminated in the ore.Quartz,sericite and dolomite are the main gangue.The optimal grinding fineness should be chosen as 0.037 mm to make sure that most of the tin minerals can be liberated from other minerals.