The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both de...The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.展开更多
Purpose–This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor(BR)onboard the vehic...Purpose–This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor(BR)onboard the vehicle,which overcomes the vulnerability of having conventional temperature sensor.Design/methodology/approach–In this study,the energy model based sensorless estimation method is developed.By analyzing the structure and the convection dissipation process of the BR onboard the vehicle,the energy-based operational temperature model of the BR and its cooling domain is established.By adopting Newton’s law of cooling and the law of conservation of energy,the energy and temperature dynamic of the BR can be stated.To minimize the use of all kinds of sensors(including both thermal and electrical),a novel regenerative braking power calculation method is proposed,which involves only the voltage of DC traction network and the duty cycle of the chopping circuit;both of them are available for the traction control unit(TCU)of the vehicle.By utilizing a real-time iterative calculation and updating the parameter of the energy model,the operational temperature of the BR can be obtained and monitored in a sensorless manner.Findings–In this study,a sensorless estimation/monitoring method of the operational temperature of BR is proposed.The results show that it is possible to utilize the existing electrical sensors that is mandatory for the traction unit’s operation to estimate the operational temperature of BR,instead of adding dedicated thermal sensors.The results also validate the effectiveness of the proposal is acceptable for the engineering practical.Originality/value–The proposal of this study provides novel concepts for the sensorless operational temperature monitoring of BR onboard rolling stocks.The proposed method only involves quasi-global electrical variable and the internal control signal within the TCU.展开更多
Series compensation has proven to increase stability in transmission of electric power. On the other hand insertion of series capacitor results in severe subsynchronous torques. The subsynchronous torque leads to gene...Series compensation has proven to increase stability in transmission of electric power. On the other hand insertion of series capacitor results in severe subsynchronous torques. The subsynchronous torque leads to generator-turbine shaft damage. Mitigation of subsynchronous transient torques is achieved through resistor bank connected to generator terminals. The insertion of resistor bank is controlled by fuzzy logic controller. The proposed controller has been tested on IEEE First Benchmark Model and it proved to have good damping for the torsional torques.展开更多
Reducing the overspeed during load rejection would benefit the mechanical and hydraulic systems in a hydropower station. This paper presents some selected results of a pilot installation of a dynamic braking system. T...Reducing the overspeed during load rejection would benefit the mechanical and hydraulic systems in a hydropower station. This paper presents some selected results of a pilot installation of a dynamic braking system. The 4 MW dump load was installed and tested on a 10 MW Francis turbine unit. The results show that the overspeed reduction is obtained and compares well with simulation results. Further, a reduction in vibration levels is positive as well as the reduced time for stopping and possible resynchronization. It is argued that a similar system with continuous cooling could be used as an attractive alternative to spillway capacity.展开更多
针对模块化多电平换流器(modular multilevel converter,MMC)高压直流输电技术(high voltage direct current,HVDC)受端交流系统故障引起的直流过电压问题,文中提出一种基于晶闸管的模块化组合式直流泄能装置拓扑及协调控制方法。该直...针对模块化多电平换流器(modular multilevel converter,MMC)高压直流输电技术(high voltage direct current,HVDC)受端交流系统故障引起的直流过电压问题,文中提出一种基于晶闸管的模块化组合式直流泄能装置拓扑及协调控制方法。该直流泄能拓扑包括模块化分布式泄能部分、限流电抗器和集中式泄能电阻3部分,对子模块工作模式进行设计,提出可避免直流泄能装置反复投切的弹性调节泄能的协调控制策略,推导直流泄能装置功率控制及其内部电气耦合关系,给出泄能装置元件参数的设计方法。最后,基于PSCAD/EMTDC搭建MMC-HVDC及所提出的直流泄能装置模型,研究单相和三相接地故障下直流泄能装置的特性及直流过电压抑制效果。结果表明,所提直流泄能装置在协调控制策略下能够分阶段弹性调节泄能功率,有效抑制直流过电压,并有利于故障后的快速恢复。展开更多
文摘The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited(2022YJ230)the Scientific Research Projects of China Association of Metros(CAMET-KY-2022039).
文摘Purpose–This study aims to improve the availability of regenerative braking for urban metro vehicles by introducing a sensorless operational temperature estimation method for the braking resistor(BR)onboard the vehicle,which overcomes the vulnerability of having conventional temperature sensor.Design/methodology/approach–In this study,the energy model based sensorless estimation method is developed.By analyzing the structure and the convection dissipation process of the BR onboard the vehicle,the energy-based operational temperature model of the BR and its cooling domain is established.By adopting Newton’s law of cooling and the law of conservation of energy,the energy and temperature dynamic of the BR can be stated.To minimize the use of all kinds of sensors(including both thermal and electrical),a novel regenerative braking power calculation method is proposed,which involves only the voltage of DC traction network and the duty cycle of the chopping circuit;both of them are available for the traction control unit(TCU)of the vehicle.By utilizing a real-time iterative calculation and updating the parameter of the energy model,the operational temperature of the BR can be obtained and monitored in a sensorless manner.Findings–In this study,a sensorless estimation/monitoring method of the operational temperature of BR is proposed.The results show that it is possible to utilize the existing electrical sensors that is mandatory for the traction unit’s operation to estimate the operational temperature of BR,instead of adding dedicated thermal sensors.The results also validate the effectiveness of the proposal is acceptable for the engineering practical.Originality/value–The proposal of this study provides novel concepts for the sensorless operational temperature monitoring of BR onboard rolling stocks.The proposed method only involves quasi-global electrical variable and the internal control signal within the TCU.
文摘Series compensation has proven to increase stability in transmission of electric power. On the other hand insertion of series capacitor results in severe subsynchronous torques. The subsynchronous torque leads to generator-turbine shaft damage. Mitigation of subsynchronous transient torques is achieved through resistor bank connected to generator terminals. The insertion of resistor bank is controlled by fuzzy logic controller. The proposed controller has been tested on IEEE First Benchmark Model and it proved to have good damping for the torsional torques.
文摘Reducing the overspeed during load rejection would benefit the mechanical and hydraulic systems in a hydropower station. This paper presents some selected results of a pilot installation of a dynamic braking system. The 4 MW dump load was installed and tested on a 10 MW Francis turbine unit. The results show that the overspeed reduction is obtained and compares well with simulation results. Further, a reduction in vibration levels is positive as well as the reduced time for stopping and possible resynchronization. It is argued that a similar system with continuous cooling could be used as an attractive alternative to spillway capacity.
文摘针对模块化多电平换流器(modular multilevel converter,MMC)高压直流输电技术(high voltage direct current,HVDC)受端交流系统故障引起的直流过电压问题,文中提出一种基于晶闸管的模块化组合式直流泄能装置拓扑及协调控制方法。该直流泄能拓扑包括模块化分布式泄能部分、限流电抗器和集中式泄能电阻3部分,对子模块工作模式进行设计,提出可避免直流泄能装置反复投切的弹性调节泄能的协调控制策略,推导直流泄能装置功率控制及其内部电气耦合关系,给出泄能装置元件参数的设计方法。最后,基于PSCAD/EMTDC搭建MMC-HVDC及所提出的直流泄能装置模型,研究单相和三相接地故障下直流泄能装置的特性及直流过电压抑制效果。结果表明,所提直流泄能装置在协调控制策略下能够分阶段弹性调节泄能功率,有效抑制直流过电压,并有利于故障后的快速恢复。