期刊文献+
共找到170,080篇文章
< 1 2 250 >
每页显示 20 50 100
Significant risk factors for intensive care unit-acquired weakness:A processing strategy based on repeated machine learning 被引量:9
1
作者 Ling Wang Deng-Yan Long 《World Journal of Clinical Cases》 SCIE 2024年第7期1235-1242,共8页
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr... BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration. 展开更多
关键词 Intensive care unit-acquired weakness Risk factors machine learning PREVENTION Strategies
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:2
2
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Machine learning applications in stroke medicine:advancements,challenges,and future prospectives 被引量:3
3
作者 Mario Daidone Sergio Ferrantelli Antonino Tuttolomondo 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期769-773,共5页
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique... Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease. 展开更多
关键词 cerebrovascular disease deep learning machine learning reinforcement learning STROKE stroke therapy supervised learning unsupervised learning
下载PDF
Machine Learning Analysis of Impact of Western US Fires on Central US Hailstorms 被引量:1
4
作者 Xinming LIN Jiwen FAN +1 位作者 Yuwei ZHANG ZJason HOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1450-1462,共13页
Fires,including wildfires,harm air quality and essential public services like transportation,communication,and utilities.These fires can also influence atmospheric conditions,including temperature and aerosols,potenti... Fires,including wildfires,harm air quality and essential public services like transportation,communication,and utilities.These fires can also influence atmospheric conditions,including temperature and aerosols,potentially affecting severe convective storms.Here,we investigate the remote impacts of fires in the western United States(WUS)on the occurrence of large hail(size:≥2.54 cm)in the central US(CUS)over the 20-year period of 2001–20 using the machine learning(ML),Random Forest(RF),and Extreme Gradient Boosting(XGB)methods.The developed RF and XGB models demonstrate high accuracy(>90%)and F1 scores of up to 0.78 in predicting large hail occurrences when WUS fires and CUS hailstorms coincide,particularly in four states(Wyoming,South Dakota,Nebraska,and Kansas).The key contributing variables identified from both ML models include the meteorological variables in the fire region(temperature and moisture),the westerly wind over the plume transport path,and the fire features(i.e.,the maximum fire power and burned area).The results confirm a linkage between WUS fires and severe weather in the CUS,corroborating the findings of our previous modeling study conducted on case simulations with a detailed physics model. 展开更多
关键词 WILDFIRE severe convective storm HAILSTORM machine learning
下载PDF
Enhanced prediction of anisotropic deformation behavior using machine learning with data augmentation 被引量:1
5
作者 Sujeong Byun Jinyeong Yu +3 位作者 Seho Cheon Seong Ho Lee Sung Hyuk Park Taekyung Lee 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期186-196,共11页
Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary w... Mg alloys possess an inherent plastic anisotropy owing to the selective activation of deformation mechanisms depending on the loading condition.This characteristic results in a diverse range of flow curves that vary with a deformation condition.This study proposes a novel approach for accurately predicting an anisotropic deformation behavior of wrought Mg alloys using machine learning(ML)with data augmentation.The developed model combines four key strategies from data science:learning the entire flow curves,generative adversarial networks(GAN),algorithm-driven hyperparameter tuning,and gated recurrent unit(GRU)architecture.The proposed model,namely GAN-aided GRU,was extensively evaluated for various predictive scenarios,such as interpolation,extrapolation,and a limited dataset size.The model exhibited significant predictability and improved generalizability for estimating the anisotropic compressive behavior of ZK60 Mg alloys under 11 annealing conditions and for three loading directions.The GAN-aided GRU results were superior to those of previous ML models and constitutive equations.The superior performance was attributed to hyperparameter optimization,GAN-based data augmentation,and the inherent predictivity of the GRU for extrapolation.As a first attempt to employ ML techniques other than artificial neural networks,this study proposes a novel perspective on predicting the anisotropic deformation behaviors of wrought Mg alloys. 展开更多
关键词 Plastic anisotropy Compression ANNEALING machine learning Data augmentation
下载PDF
Assessment of compressive strength of jet grouting by machine learning 被引量:1
6
作者 Esteban Diaz Edgar Leonardo Salamanca-Medina Roberto Tomas 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期102-111,共10页
Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the prope... Jet grouting is one of the most popular soil improvement techniques,but its design usually involves great uncertainties that can lead to economic cost overruns in construction projects.The high dispersion in the properties of the improved material leads to designers assuming a conservative,arbitrary and unjustified strength,which is even sometimes subjected to the results of the test fields.The present paper presents an approach for prediction of the uniaxial compressive strength(UCS)of jet grouting columns based on the analysis of several machine learning algorithms on a database of 854 results mainly collected from different research papers.The selected machine learning model(extremely randomized trees)relates the soil type and various parameters of the technique to the value of the compressive strength.Despite the complex mechanism that surrounds the jet grouting process,evidenced by the high dispersion and low correlation of the variables studied,the trained model allows to optimally predict the values of compressive strength with a significant improvement with respect to the existing works.Consequently,this work proposes for the first time a reliable and easily applicable approach for estimation of the compressive strength of jet grouting columns. 展开更多
关键词 Jet grouting Ground improvement Compressive strength machine learning
下载PDF
Machine Learning-Based Decision-Making Mechanism for Risk Assessment of Cardiovascular Disease 被引量:1
7
作者 Cheng Wang Haoran Zhu Congjun Rao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期691-718,共28页
Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In thi... Cardiovascular disease(CVD)has gradually become one of the main causes of harm to the life and health of residents.Exploring the influencing factors and risk assessment methods of CVD has become a general trend.In this paper,a machine learning-based decision-making mechanism for risk assessment of CVD is designed.In this mechanism,the logistics regression analysismethod and factor analysismodel are used to select age,obesity degree,blood pressure,blood fat,blood sugar,smoking status,drinking status,and exercise status as the main pathogenic factors of CVD,and an index systemof risk assessment for CVD is established.Then,a two-stage model combining K-means cluster analysis and random forest(RF)is proposed to evaluate and predict the risk of CVD,and the predicted results are compared with the methods of Bayesian discrimination,K-means cluster analysis and RF.The results show that thepredictioneffect of theproposedtwo-stagemodel is better than that of the comparedmethods.Moreover,several suggestions for the government,the medical industry and the public are provided based on the research results. 展开更多
关键词 CVD influencing factors risk assessment machine learning two-stage model
下载PDF
High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys 被引量:1
8
作者 Yaowei Wang Tian Xie +4 位作者 Qingli Tang Mingxu Wang Tao Ying Hong Zhu Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1406-1418,共13页
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi... Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems. 展开更多
关键词 Mg intermetallics Corrosion property HIGH-THROUGHPUT Density functional theory machine learning
下载PDF
Use of machine learning models for the prognostication of liver transplantation: A systematic review 被引量:2
9
作者 Gidion Chongo Jonathan Soldera 《World Journal of Transplantation》 2024年第1期164-188,共25页
BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are p... BACKGROUND Liver transplantation(LT)is a life-saving intervention for patients with end-stage liver disease.However,the equitable allocation of scarce donor organs remains a formidable challenge.Prognostic tools are pivotal in identifying the most suitable transplant candidates.Traditionally,scoring systems like the model for end-stage liver disease have been instrumental in this process.Nevertheless,the landscape of prognostication is undergoing a transformation with the integration of machine learning(ML)and artificial intelligence models.AIM To assess the utility of ML models in prognostication for LT,comparing their performance and reliability to established traditional scoring systems.METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines,we conducted a thorough and standardized literature search using the PubMed/MEDLINE database.Our search imposed no restrictions on publication year,age,or gender.Exclusion criteria encompassed non-English studies,review articles,case reports,conference papers,studies with missing data,or those exhibiting evident methodological flaws.RESULTS Our search yielded a total of 64 articles,with 23 meeting the inclusion criteria.Among the selected studies,60.8%originated from the United States and China combined.Only one pediatric study met the criteria.Notably,91%of the studies were published within the past five years.ML models consistently demonstrated satisfactory to excellent area under the receiver operating characteristic curve values(ranging from 0.6 to 1)across all studies,surpassing the performance of traditional scoring systems.Random forest exhibited superior predictive capabilities for 90-d mortality following LT,sepsis,and acute kidney injury(AKI).In contrast,gradient boosting excelled in predicting the risk of graft-versus-host disease,pneumonia,and AKI.CONCLUSION This study underscores the potential of ML models in guiding decisions related to allograft allocation and LT,marking a significant evolution in the field of prognostication. 展开更多
关键词 Liver transplantation machine learning models PROGNOSTICATION Allograft allocation Artificial intelligence
下载PDF
Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature 被引量:1
10
作者 Mengwei Wu Wei Yong +2 位作者 Cunqin Fu Chunmei Ma Ruiping Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期773-785,共13页
The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important prac... The martensitic transformation temperature is the basis for the application of shape memory alloys(SMAs),and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance.In this work,machine learning(ML)methods were utilized to accelerate the search for shape memory alloys with targeted properties(phase transition temperature).A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data.Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys.The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression(SVR)model.The results show that the machine learning model can obtain target materials more efficiently and pertinently,and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature.On this basis,the relationship between phase transition temperature and material descriptors is analyzed,and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms.This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys. 展开更多
关键词 machine learning support vector regression shape memory alloys martensitic transformation temperature
下载PDF
ArcCHECK Machine QA工具在医用直线加速器质量保证中的应用效果
11
作者 张上超 曾华驱 王思阳 《医疗装备》 2024年第7期19-24,共6页
目的探讨ArcCHECK Machine QA工具在医用直线加速器质量保证中的应用效果。方法利用ArcCHECK Machine QA工具和ArcCHECK体模对医用直线加速器进行性能测试,项目包括机架角度、机架旋转速度、机架旋转中心、多叶准直器和铅门位置的一致... 目的探讨ArcCHECK Machine QA工具在医用直线加速器质量保证中的应用效果。方法利用ArcCHECK Machine QA工具和ArcCHECK体模对医用直线加速器进行性能测试,项目包括机架角度、机架旋转速度、机架旋转中心、多叶准直器和铅门位置的一致性、机架旋转出束时的平坦度和对称性,评估该工具在医用直线加速器质量保证中的应用效果。结果旋转模式下机架平均旋转速度为3.6 deg/s,最大偏差约0.5 deg/s;机架旋转等中心形成的平均半径为0.4 mm,多叶准直器与铅门的最大距离正、负差异平均值分别为0.7 mm、-0.7 mm;旋转出束模式下Y方向的平坦度为1.8%,Y方向的对称性为1.1%,X方向的对称性为4.3%。结论ArcCHECK Machine QA工具可用于医用直线加速器常规及容积调强出束性能质量保证。 展开更多
关键词 ArcCHECK machine QA工具 质量保证 容积调强 等中心
下载PDF
Label Recovery and Trajectory Designable Network for Transfer Fault Diagnosis of Machines With Incorrect Annotation 被引量:1
12
作者 Bin Yang Yaguo Lei +2 位作者 Xiang Li Naipeng Li Asoke K.Nandi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期932-945,共14页
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio... The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation. 展开更多
关键词 Deep transfer learning domain adaptation incorrect label annotation intelligent fault diagnosis rotating machines
下载PDF
Predicting major adverse cardiovascular events after orthotopic liver transplantation using a supervised machine learning model:A cohort study 被引量:1
13
作者 Jonathan Soldera Leandro Luis Corso +8 位作者 Matheus Machado Rech Vinícius Remus Ballotin Lucas Goldmann Bigarella Fernanda Tomé Nathalia Moraes Rafael Sartori Balbinot Santiago Rodriguez Ajacio Bandeira de Mello Brandão Bruno Hochhegger 《World Journal of Hepatology》 2024年第2期193-210,共18页
BACKGROUND Liver transplant(LT)patients have become older and sicker.The rate of post-LT major adverse cardiovascular events(MACE)has increased,and this in turn raises 30-d post-LT mortality.Noninvasive cardiac stress... BACKGROUND Liver transplant(LT)patients have become older and sicker.The rate of post-LT major adverse cardiovascular events(MACE)has increased,and this in turn raises 30-d post-LT mortality.Noninvasive cardiac stress testing loses accuracy when applied to pre-LT cirrhotic patients.AIM To assess the feasibility and accuracy of a machine learning model used to predict post-LT MACE in a regional cohort.METHODS This retrospective cohort study involved 575 LT patients from a Southern Brazilian academic center.We developed a predictive model for post-LT MACE(defined as a composite outcome of stroke,new-onset heart failure,severe arrhythmia,and myocardial infarction)using the extreme gradient boosting(XGBoost)machine learning model.We addressed missing data(below 20%)for relevant variables using the k-nearest neighbor imputation method,calculating the mean from the ten nearest neighbors for each case.The modeling dataset included 83 features,encompassing patient and laboratory data,cirrhosis complications,and pre-LT cardiac assessments.Model performance was assessed using the area under the receiver operating characteristic curve(AUROC).We also employed Shapley additive explanations(SHAP)to interpret feature impacts.The dataset was split into training(75%)and testing(25%)sets.Calibration was evaluated using the Brier score.We followed Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis guidelines for reporting.Scikit-learn and SHAP in Python 3 were used for all analyses.The supplementary material includes code for model development and a user-friendly online MACE prediction calculator.RESULTS Of the 537 included patients,23(4.46%)developed in-hospital MACE,with a mean age at transplantation of 52.9 years.The majority,66.1%,were male.The XGBoost model achieved an impressive AUROC of 0.89 during the training stage.This model exhibited accuracy,precision,recall,and F1-score values of 0.84,0.85,0.80,and 0.79,respectively.Calibration,as assessed by the Brier score,indicated excellent model calibration with a score of 0.07.Furthermore,SHAP values highlighted the significance of certain variables in predicting postoperative MACE,with negative noninvasive cardiac stress testing,use of nonselective beta-blockers,direct bilirubin levels,blood type O,and dynamic alterations on myocardial perfusion scintigraphy being the most influential factors at the cohort-wide level.These results highlight the predictive capability of our XGBoost model in assessing the risk of post-LT MACE,making it a valuable tool for clinical practice.CONCLUSION Our study successfully assessed the feasibility and accuracy of the XGBoost machine learning model in predicting post-LT MACE,using both cardiovascular and hepatic variables.The model demonstrated impressive performance,aligning with literature findings,and exhibited excellent calibration.Notably,our cautious approach to prevent overfitting and data leakage suggests the stability of results when applied to prospective data,reinforcing the model’s value as a reliable tool for predicting post-LT MACE in clinical practice. 展开更多
关键词 Liver transplantation Major adverse cardiac events machine learning Myocardial perfusion imaging Stress test
下载PDF
Machine learning for predicting the outcome of terminal ballistics events
14
作者 Shannon Ryan Neeraj Mohan Sushma +4 位作者 Arun Kumar AV Julian Berk Tahrima Hashem Santu Rana Svetha Venkatesh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期14-26,共13页
Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression mode... Machine learning(ML) is well suited for the prediction of high-complexity,high-dimensional problems such as those encountered in terminal ballistics.We evaluate the performance of four popular ML-based regression models,extreme gradient boosting(XGBoost),artificial neural network(ANN),support vector regression(SVR),and Gaussian process regression(GP),on two common terminal ballistics’ problems:(a)predicting the V50ballistic limit of monolithic metallic armour impacted by small and medium calibre projectiles and fragments,and(b) predicting the depth to which a projectile will penetrate a target of semi-infinite thickness.To achieve this we utilise two datasets,each consisting of approximately 1000samples,collated from public release sources.We demonstrate that all four model types provide similarly excellent agreement when interpolating within the training data and diverge when extrapolating outside this range.Although extrapolation is not advisable for ML-based regression models,for applications such as lethality/survivability analysis,such capability is required.To circumvent this,we implement expert knowledge and physics-based models via enforced monotonicity,as a Gaussian prior mean,and through a modified loss function.The physics-informed models demonstrate improved performance over both classical physics-based models and the basic ML regression models,providing an ability to accurately fit experimental data when it is available and then revert to the physics-based model when not.The resulting models demonstrate high levels of predictive accuracy over a very wide range of projectile types,target materials and thicknesses,and impact conditions significantly more diverse than that achievable from any existing analytical approach.Compared with numerical analysis tools such as finite element solvers the ML models run orders of magnitude faster.We provide some general guidelines throughout for the development,application,and reporting of ML models in terminal ballistics problems. 展开更多
关键词 machine learning Artificial intelligence Physics-informed machine learning Terminal ballistics Armour
下载PDF
Machine Fault Diagnosis Using Audio Sensors Data and Explainable AI Techniques-LIME and SHAP
15
作者 Aniqua Nusrat Zereen Abir Das Jia Uddin 《Computers, Materials & Continua》 SCIE EI 2024年第9期3463-3484,共22页
Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learni... Machine fault diagnostics are essential for industrial operations,and advancements in machine learning have significantly advanced these systems by providing accurate predictions and expedited solutions.Machine learning models,especially those utilizing complex algorithms like deep learning,have demonstrated major potential in extracting important information fromlarge operational datasets.Despite their efficiency,machine learningmodels face challenges,making Explainable AI(XAI)crucial for improving their understandability and fine-tuning.The importance of feature contribution and selection using XAI in the diagnosis of machine faults is examined in this study.The technique is applied to evaluate different machine-learning algorithms.Extreme Gradient Boosting,Support Vector Machine,Gaussian Naive Bayes,and Random Forest classifiers are used alongside Logistic Regression(LR)as a baseline model because their efficacy and simplicity are evaluated thoroughly with empirical analysis.The XAI is used as a targeted feature selection technique to select among 29 features of the time and frequency domain.The XAI approach is lightweight,trained with only targeted features,and achieved similar results as the traditional approach.The accuracy without XAI on baseline LR is 79.57%,whereas the approach with XAI on LR is 80.28%. 展开更多
关键词 Explainable AI feature selection machine learning machine fault diagnosis
下载PDF
Multimodal Machine Learning Guides Low Carbon Aeration Strategies in Urban Wastewater Treatment
16
作者 Hong-Cheng Wang Yu-Qi Wang +4 位作者 Xu Wang Wan-Xin Yin Ting-Chao Yu Chen-Hao Xue Ai-Jie Wang 《Engineering》 SCIE EI CAS CSCD 2024年第5期51-62,共12页
The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising sol... The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising solution.Here,we introduce an ML technique based on multimodal strategies,focusing specifically on intelligent aeration control in wastewater treatment plants(WWTPs).The generalization of the multimodal strategy is demonstrated on eight ML models.The results demonstrate that this multimodal strategy significantly enhances model indicators for ML in environmental science and the efficiency of aeration control,exhibiting exceptional performance and interpretability.Integrating random forest with visual models achieves the highest accuracy in forecasting aeration quantity in multimodal models,with a mean absolute percentage error of 4.4%and a coefficient of determination of 0.948.Practical testing in a full-scale plant reveals that the multimodal model can reduce operation costs by 19.8%compared to traditional fuzzy control methods.The potential application of these strategies in critical water science domains is discussed.To foster accessibility and promote widespread adoption,the multimodal ML models are freely available on GitHub,thereby eliminating technical barriers and encouraging the application of artificial intelligence in urban wastewater treatment. 展开更多
关键词 Wastewater treatment Multimodal machine learning Deep learning Aeration control Interpretable machine learning
下载PDF
Improved PSO-Extreme Learning Machine Algorithm for Indoor Localization
17
作者 Qiu Wanqing Zhang Qingmiao +1 位作者 Zhao Junhui Yang Lihua 《China Communications》 SCIE CSCD 2024年第5期113-122,共10页
Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the rece... Wi Fi and fingerprinting localization method have been a hot topic in indoor positioning because of their universality and location-related features.The basic assumption of fingerprinting localization is that the received signal strength indication(RSSI)distance is accord with the location distance.Therefore,how to efficiently match the current RSSI of the user with the RSSI in the fingerprint database is the key to achieve high-accuracy localization.In this paper,a particle swarm optimization-extreme learning machine(PSO-ELM)algorithm is proposed on the basis of the original fingerprinting localization.Firstly,we collect the RSSI of the experimental area to construct the fingerprint database,and the ELM algorithm is applied to the online stages to determine the corresponding relation between the location of the terminal and the RSSI it receives.Secondly,PSO algorithm is used to improve the bias and weight of ELM neural network,and the global optimal results are obtained.Finally,extensive simulation results are presented.It is shown that the proposed algorithm can effectively reduce mean error of localization and improve positioning accuracy when compared with K-Nearest Neighbor(KNN),Kmeans and Back-propagation(BP)algorithms. 展开更多
关键词 extreme learning machine fingerprinting localization indoor localization machine learning particle swarm optimization
下载PDF
Evaluation and Prediction of Groundwater Quality in the Municipality of Za-Kpota (South Benin) Using Machine Learning and Remote Sensing
18
作者 Jennifer A. Ahlonsou Firmin M. Adandedji +2 位作者 Abdoukarim Alassane Consolas Adihou Mama Daouda 《Journal of Water Resource and Protection》 CAS 2024年第7期502-522,共21页
Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The method... Accessing drinking water is a global issue. This study aims to contribute to the assessment of groundwater quality in the municipality of Za-Kpota (southern Benin) using remote sensing and Machine Learning. The methodological approach used consisted in linking groundwater physico-chemical parameter data collected in the field and in the laboratory using AFNOR 1994 standardized methods to satellite data (Landsat) in order to sketch out a groundwater quality prediction model. The data was processed using QGis (Semi-Automatic Plugin: SCP) and Python (Jupyter Netebook: Prediction) softwares. The results of water analysis from the sampled wells and boreholes indicated that most of the water is acidic (pH varying between 5.59 and 7.83). The water was moderately mineralized, with conductivity values of less than 1500 μs/cm overall (59 µS/cm to 1344 µS/cm), with high concentrations of nitrates and phosphates in places. The dynamics of groundwater quality in the municipality of Za-Kpota between 2008 and 2022 are also marked by a regression in land use units (a regression in vegetation and marshland formation in favor of built-up areas, bare soil, crops and fallow land) revealed by the diachronic analysis of satellite images from 2008, 2013, 2018 and 2022. Surveys of local residents revealed the use of herbicides and pesticides in agricultural fields, which are the main drivers contributing to the groundwater quality deterioration observed in the study area. Field surveys revealed the use of herbicides and pesticides in agricultural fields, which are factors contributing to the deterioration in groundwater quality observed in the study area. The results of the groundwater quality prediction models (ANN, RF and LR) developed led to the conclusion that the model based on Artificial Neural Networks (ANN: R2 = 0.97 and RMSE = 0) is the best for groundwater quality changes modelling in the Za-Kpota municipality. 展开更多
关键词 GROUNDWATER Land Use Electrical Conductivity machine Learning Za-Kpota
下载PDF
Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine
19
作者 Chen Chen Zhongwei Xu +2 位作者 Meng Mei Kai Huang Siu Ming Lo 《Computers, Materials & Continua》 SCIE EI 2024年第6期4533-4549,共17页
Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitori... Railway switch machine is essential for maintaining the safety and punctuality of train operations.A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein.Unlike existing methods,this approach takes into account the spatial information of the time series monitoring data,aligning with the domain expertise of on-site manual monitoring.Besides,a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information.First,one-dimensional signal data is preprocessed and transformed into two-dimensional images.Afterward,the fusion feature tensor is created by utilizing the images of the three-phase current and employing the CANDE-COMP/PARAFAC(CP)decomposition method.Then,the tensor learning-based model is built using the extracted fusion feature tensor.The developed fault diagnosis scheme is valid with the field three-phase current dataset.The experiment indicates an enhanced performance of the developed fault diagnosis scheme over the current approach,particularly in terms of recall,precision,and F1-score. 展开更多
关键词 Railway switch machine tensor machine fault diagnosis
下载PDF
Advancements in machine learning for material design and process optimization in the field of additive manufacturing
20
作者 Hao-ran Zhou Hao Yang +8 位作者 Huai-qian Li Ying-chun Ma Sen Yu Jian shi Jing-chang Cheng Peng Gao Bo Yu Zhi-quan Miao Yan-peng Wei 《China Foundry》 SCIE EI CAS CSCD 2024年第2期101-115,共15页
Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is co... Additive manufacturing technology is highly regarded due to its advantages,such as high precision and the ability to address complex geometric challenges.However,the development of additive manufacturing process is constrained by issues like unclear fundamental principles,complex experimental cycles,and high costs.Machine learning,as a novel artificial intelligence technology,has the potential to deeply engage in the development of additive manufacturing process,assisting engineers in learning and developing new techniques.This paper provides a comprehensive overview of the research and applications of machine learning in the field of additive manufacturing,particularly in model design and process development.Firstly,it introduces the background and significance of machine learning-assisted design in additive manufacturing process.It then further delves into the application of machine learning in additive manufacturing,focusing on model design and process guidance.Finally,it concludes by summarizing and forecasting the development trends of machine learning technology in the field of additive manufacturing. 展开更多
关键词 additive manufacturing machine learning material design process optimization intersection of disciplines embedded machine learning
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部