At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rota...At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design.展开更多
In order to cool computer chip efficiently with the least noise, a single phase water-cooling radiator for computer chip driven by piezoelectric pump with two parallel-connection chambers is developed. The structure a...In order to cool computer chip efficiently with the least noise, a single phase water-cooling radiator for computer chip driven by piezoelectric pump with two parallel-connection chambers is developed. The structure and work principle of this radiator is described. Material, processing method and design principles of whole radiator are also explained. Finite element analysis (FEA) software, ANSYS, is used to simulate the heat distribution in the radiator. Testing equipments for water-cooling radiator are also listed. By experimental tests, influences of flowrate inside the cooling system and fan on chip cooling are explicated. This water-cooling radiator is proved more efficient than current air-cooling radiator with comparison experiments. During cooling the heater which simulates the working of computer chip with different power, the water-cooling radiator needs shorter time to reach lower steady temperatures than current air-cooling radiator.展开更多
For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mat...For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mathematical model by control capacity methodis built. At the same time, the measurement on the melted depth ofbottom electrode is conducted which verified the correctness of thebuilt mathematical model. On the base of verification, all kinds ofkey parameters are calculated through the application and a series ofresults are simulated. Finally, the optimum parameters are found andthe service life of bottom electrode is prolonged.展开更多
The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial perform...The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.展开更多
The water-cooling heat dissipation technology can solve the heat dissipation and noise problems of the calculation plate.Therefore,the structural design of the water-cooling plate directly affects its flow and heat tr...The water-cooling heat dissipation technology can solve the heat dissipation and noise problems of the calculation plate.Therefore,the structural design of the water-cooling plate directly affects its flow and heat transfer characteristics,which restricts the promotion and application of the technology.To this end,the water-cooling plate of a heat dissipation system was taken as the research object,and its flow and heat transfer characteristics were numerical simulated and experimental studied.Through comparative analysis,the rationality of the numerical simulation method was verified.Based on this,three improved schemes of water-cooling plate structure were proposed and numerical simulation was carried out,and the optimal model was verified by experiments.The results of the study show that compared with the original water-cooling plate,the optimized water-cooling plate has increased internal flow velocity and distributes uniformly,increased heat transfer amount by 4.2%,and the average temperature of the calculation plate decreased by 5.3%.展开更多
基金Supported by China Coal Science and Technology Group Technology Innovation Fund Major Project(Grand No.2018ZD002)China Coal Science and Technology Group Technology Innovation Fund Youth Project(Grand No.2018-2-QN010)
文摘At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA404250)National Natural Science Foundation of China (No. 50575093).
文摘In order to cool computer chip efficiently with the least noise, a single phase water-cooling radiator for computer chip driven by piezoelectric pump with two parallel-connection chambers is developed. The structure and work principle of this radiator is described. Material, processing method and design principles of whole radiator are also explained. Finite element analysis (FEA) software, ANSYS, is used to simulate the heat distribution in the radiator. Testing equipments for water-cooling radiator are also listed. By experimental tests, influences of flowrate inside the cooling system and fan on chip cooling are explicated. This water-cooling radiator is proved more efficient than current air-cooling radiator with comparison experiments. During cooling the heater which simulates the working of computer chip with different power, the water-cooling radiator needs shorter time to reach lower steady temperatures than current air-cooling radiator.
文摘For predicting and controlling the melted depth of bottomelectrode during the process of steelmaking, the water-cooling steel-stick electrode is taken as an example, to analyze the process ofheat transfer, then 3D mathematical model by control capacity methodis built. At the same time, the measurement on the melted depth ofbottom electrode is conducted which verified the correctness of thebuilt mathematical model. On the base of verification, all kinds ofkey parameters are calculated through the application and a series ofresults are simulated. Finally, the optimum parameters are found andthe service life of bottom electrode is prolonged.
基金supported in part by the National Natural Science Foundation of China(J2124006,62076185)。
文摘The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.
文摘The water-cooling heat dissipation technology can solve the heat dissipation and noise problems of the calculation plate.Therefore,the structural design of the water-cooling plate directly affects its flow and heat transfer characteristics,which restricts the promotion and application of the technology.To this end,the water-cooling plate of a heat dissipation system was taken as the research object,and its flow and heat transfer characteristics were numerical simulated and experimental studied.Through comparative analysis,the rationality of the numerical simulation method was verified.Based on this,three improved schemes of water-cooling plate structure were proposed and numerical simulation was carried out,and the optimal model was verified by experiments.The results of the study show that compared with the original water-cooling plate,the optimized water-cooling plate has increased internal flow velocity and distributes uniformly,increased heat transfer amount by 4.2%,and the average temperature of the calculation plate decreased by 5.3%.