Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate o...Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.展开更多
In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this s...In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy.展开更多
The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising sol...The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising solution.Here,we introduce an ML technique based on multimodal strategies,focusing specifically on intelligent aeration control in wastewater treatment plants(WWTPs).The generalization of the multimodal strategy is demonstrated on eight ML models.The results demonstrate that this multimodal strategy significantly enhances model indicators for ML in environmental science and the efficiency of aeration control,exhibiting exceptional performance and interpretability.Integrating random forest with visual models achieves the highest accuracy in forecasting aeration quantity in multimodal models,with a mean absolute percentage error of 4.4%and a coefficient of determination of 0.948.Practical testing in a full-scale plant reveals that the multimodal model can reduce operation costs by 19.8%compared to traditional fuzzy control methods.The potential application of these strategies in critical water science domains is discussed.To foster accessibility and promote widespread adoption,the multimodal ML models are freely available on GitHub,thereby eliminating technical barriers and encouraging the application of artificial intelligence in urban wastewater treatment.展开更多
Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtaili...Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations.展开更多
The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of...The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of substantial combined sewer overflows.The CAWS comprises a network of effluent dominated streams.More stringent dissolved oxygen(DO)standards and a reduced flow augmentation allowance have been recently applied to the CAWS.Therefore,a carefully calibrated and verified one-dimensional flow and water quality model was applied to the CAWS to determine emission-based real-time control guidelines for the operation of flow augmentation and aeration stations.The goal of these guidelines was to attain DO standards at least 95%of the time.The“optimal”guidelines were tested for representative normal,dry,and wet years.The finally proposed guidelines were found in the simulations to attain the 95%target for nearly all locations in the CAWS for the three test years.The developed operational guidelines have been applied since 2018 and have shown improved attainment of the DO standards throughout the CAWS while at the same time achieving similar energy use at the aeration stations on the Calumet River system,greatly lowered energy use on the Chicago River system,and greatly lowered discretionary diversion from Lake Michigan,meeting the recently enacted lower amount of allowed annual discretionary diversion.This case study indicates that emission-based real-time control developed from a well calibrated model holds potential to help many receiving water bodies achieve high attainment of water quality standards.展开更多
In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine sy...In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO 3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific.展开更多
When municipal solid waste(MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of vo...When municipal solid waste(MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids(VFA) and decrease of pH value. This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH_4 in the landfill gas from the column with aeration rate of 0.39 m3/(m3·d) and frequency of twice/d, leachate recirculation rate of 12.2 mm/d and frequency of twice/d, could amount to 40%(v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH_4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.展开更多
Despite lots of techniques in improving the heap leaching performance,many constraints on the industrial applications remain.We proposed a correspondingly effective and new idea of introducing forced aeration to impro...Despite lots of techniques in improving the heap leaching performance,many constraints on the industrial applications remain.We proposed a correspondingly effective and new idea of introducing forced aeration to improve the bad permeability and leaching effect of Yangla Copper Mine(YCM)during heap leaching.The dual-media theory was employed to study the impact mechanism of forced aeration on the variations of porous and fractured media during the column leaching experiments.An X-Ray Computed Tomography(CT)set was utilized to perform the pore imaging of the specimens and the fracture morphology of the particles within the columns was analyzed by Scanning Electron Microscope(SEM)as aeration rate(AR)changed.The results show that there exists copious fine particles within the heap of YCM,the particle size distribution of which is not reasonable.The forced aeration can not only promote the development of the porous and fractured structures but effectively break the blocked seepage paths.Then the leaching degree is improved and the seepage performance of the solute within the solution is enhanced.Therefore,the forced aeration is probable of making the leaching performance greatly improved.展开更多
To improve the efficiency of ethanol production in a batch fermentation from sweet sorghum juice under a very high gravity(VHG)condition(~290 g/L of total sugar)by Saccharomyces cerevisiae NP01,repeatedbatch fermentat...To improve the efficiency of ethanol production in a batch fermentation from sweet sorghum juice under a very high gravity(VHG)condition(~290 g/L of total sugar)by Saccharomyces cerevisiae NP01,repeatedbatch fermentation under an aerated condition(2.5 vvm for the first 4 h during every cycle)was done in a5-L fermenter.The average ethanol concentration(P),productivity(Qp)and yield(Yp/s)for five successive cycles were 112.31 g/L,1.55 g/L·h^-1 and 0.44,respectively with 80.97%sugar consumption.To complete sugar consumption,the total sugar of the juice was reduced to a high gravity(HG)level(~240 g/L).The results showed that yeast extract was not necessary for ethanol production,and aeration during every other cycle i.e.,alternating cycles,was sufficient to promote both yeast growth and ethanol production.The average P,Qpand Yp/svalues for eight successive cycles with aeration during alternating cycles were97.58 g/L,1.98 g/Láh and 0.41,respectively with 91.21%sugar consumption.The total fatty acids in the yeast cells under the aerated condition were^50%higher than without aeration,irrespective the initial sugar concentration,whereas the ergosterol contents under aeration condition were^29%to 49%higher than those without aeration.展开更多
Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to det...Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to determine the number, location, and capacity of instream aeration stations (IASs) needed to meet DO standards in combination with other pollution control measures. DO concentrations have been improved in the North Shore Channel and North Branch Chicago River by the Devon Avenue IAS for more than 35 years. A study was initiated to determine whether it was better to rehabilitate or relocate this station and to determine appropriate operational guidance for the IAS at the selected location. A water quality model capable of simulating DO concentrations during unsteady flow was used to evaluate the proper location for an IAS and operational guidance for this IAS. Three test years, a dry year, a wet year, and an extreme year, were considered in the evaluation. The study found that the Devon Avenue IAS should be rehabilitated as this location performed as well as or better than any of 10 alternative locations. According to the new operational guidance for this IAS, the amount of time with blowers operating could be substantially reduced compared to traditional operations while at the same time the attainment of the DO standards could be increased. This study shows that a carefully designed modeling study is key to effective selection, location, and operation of IASs such that attainment of DO standards can be maximized while operation hours of blowers can be minimized.展开更多
Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two cons...Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two consecutive greenhouse tomato rotation cycles in Northwest China were studied via the static closed chamber and gas chromatography technique. Four treatments, aerated deficit irrigation(AI1), non-aerated deficit irrigation(CK1), aerated full irrigation(AI2) and non-aerated full irrigation(CK2), were performed. The results showed that the tomato yield under aeration of each irrigation regime increased by 18.8% on average compared to non-aeration, and the difference was significant under full irrigation(P〈0.05). Full irrigation significantly increased the tomato yield by 23.9% on average in comparison to deficit irrigation. Moreover, aeration increased the cumulative CO2 emissions compared to non-aeration, and treatment effects were significant in the autumn-winter season(P〈0.05). A slight increase of CO2 emissions in the two seasons was observed under full irrigation(P〉0.05). There was no significant difference between aeration and non-aeration in soil N2O emissions in the spring-summer season, whereas aeration enhanced N2O emissions significantly in the autumn-winter season. Furthermore, full irrigation over the two seasons greatly increased soil N2O emissions compared to the deficit irrigation treatment(P〈0.05). Correlation analysis indicated that soil temperature was the primary factor influencing CO2 fluxes. Soil temperature, soil moisture and NO3^- were the primary factors influencing N2O fluxes. Irrigation coupled with particular soil aeration practices may allow for a balance between crop production yield and greenhouse gas mitigation in greenhouse vegetable fields.展开更多
Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow charact...Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB) of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m^2/s and 0.09 m^2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.展开更多
A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By a...A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By an angle of 30 deg to the horizontalplane, is incorporated onto the impeller shaft to improve gasentrainment, bubble Breakup, mixing in a φ 154 mm agitated vessel.This new configuration is compared to the conventional DT surfaceAeration experimentally. The results suggest that the criticalimpeller speed for onset of gas entrainment is lower for The newconfiguration and it demands greater power consumption. Moreover, theSRFB system produces 30/100-168/100 Higher volumetric mass transfercoefficient per unit power input than that obtained in theconventional DT surface Aerator under the same operation conditions.展开更多
Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate...Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies.The highest bacterial concentration and Cu^(2+)concentration after 14-d leaching were 7.61×10^(7) cells·mL^(−1) and 704.9 mg·L^(−1),respectively,at aeration duration of 4 h·d^(−1).The attached bacteria played a significant role during bioleaching from 1 to 7 d.However,free bacteria dominated the bioleaching processes from 8 to 14 d.This phenomenon was mainly caused by the formation of passivation layer through Fe3+hydrolysis along with bioleaching,which inhibited the contact between the attached bacteria and ore.Meanwhile,16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process.The results demonstrate the importance of free and attached bacteria in bioleaching.展开更多
In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics ...In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics and SS,and lots of pollutants difficult to degrade by microorganism. The process and operating parameters of project are optimized and debugged,and its economic and environmental benefits are analyzed.The results show that the process of coagulation sedimentation-hydrolytic acidification with aeration tank-biological aerated filter-active sand filter is applied in Gaoyang Sewage Treatment Plant. The design scale of sewage treatment plant is 120000 m^3/d. The influent is as following: COD is 669mg/L; SS is 424mg/L; NH_3-N is 8.83mg/L; TP is 6.03mg/L. After the process,the best removal rates of COD,SS,NH_3-N and TP are 93. 5%,98. 8%,97. 1% and 96. 2%,respectively. The various indexes of effluent water complied with standard A of the first order in Pollutants Emission Standard of Urban Wastewater Treatment Plant( GB 18918-2002). The processing cost is only 0. 807 yuan/m^3. As a result,the project construction and operation not only improve the environment,but also promote regional economic development. Process design and operating parameters provide an important reference value for the printing and dyeing wastewater treatment industry.展开更多
A practice wastewater treatment plant was operated using intermittent aeration activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of COD Cr , BOD 5, T...A practice wastewater treatment plant was operated using intermittent aeration activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of COD Cr , BOD 5, TN, TP, NH 3\|N, TKN, and SS varied in a range of 207.5—1640 mg/L, 61.8—637 mg/L, 28.5—75.6 mg/L, 4.38—20.2 mg/L, 13.6—31.9 mg/L, 28.5—75.6 mg/L, and 111—1208 mg/L, the effluent means were less than 50 mg/L, 20 mg/L, 5 mg/L, 1.0 mg/L, 5 mg/L, 10 mg/L, and 20 mg/L, respectively. Based on a long time of operating results, this process is very suitable for nutrient biological removal for treating the municipal wastewater those water characteristics are similar as that of the Songjiang Municipal Waste Water Treatment Plant(SJMWTP).展开更多
In order to develop an effective MIBK removal method of H 2TaF 7 solution in tantalum extraction process, MIBK removal from aqueous solution by the aeration method was investigated by using an aeration column with the...In order to develop an effective MIBK removal method of H 2TaF 7 solution in tantalum extraction process, MIBK removal from aqueous solution by the aeration method was investigated by using an aeration column with the dimensions of 78 mm in inner diameter and 1 100 mm in length. The effects of aeration conditions on aerating efficiency were investigated in the ranges of temperature 303 333 K, airflow rate 50 300 L/h,volume of solution 1 600 3 200 mL. Aerating efficiency increases with the increase of temperature and airflow rate. MIBK in aqueous solution can be removed from 0.058 mol/L to 0.002 mol/L at 50 ℃,airflow rate 200 L/h, volume of solution 2 400 mL and aeration time 1h. The experimental results show that MIBK can be removed effectively from aqueous solution by the aeration method.展开更多
The effects of soil aeration on physiological characters and root tuber yield of Ipomoea batatas (L.) Lam. CV Lushu7 and Xushu18 were studied. The results showed that soil aeration improvement could increase ATP conte...The effects of soil aeration on physiological characters and root tuber yield of Ipomoea batatas (L.) Lam. CV Lushu7 and Xushu18 were studied. The results showed that soil aeration improvement could increase ATP content and ATPase activity in functional leaves and root tubers and ABA content in root tubers. It also accelerated the transportation of 14C-photosynthate from leaves to root tubers and enhanced dry matter distribution in root tubers and thus root tuber yield was significantly raised. The role of ATP, ATPase and ABA in accelerating the transportation of 14C-photosynthate was discussed based on the changes of soluble carbonhydrate content in sweet potato plant.展开更多
Application effect of micropore aeration technique in rearing process of summer fingerlings of Silurus asotus from Poyang lake was studied. This study provides an efficient safe aeration solution for large-scale finge...Application effect of micropore aeration technique in rearing process of summer fingerlings of Silurus asotus from Poyang lake was studied. This study provides an efficient safe aeration solution for large-scale fingerling rearing of Silurus asotus.展开更多
Different cadmium(Cd)-accumulated rice genotypes(Erjiunan 1 and Fupin 36)were used to explore the effect of rice rhizosphere aeration on Cd uptake and accumulation.Aeration in the nutrient soluti on influe need the ag...Different cadmium(Cd)-accumulated rice genotypes(Erjiunan 1 and Fupin 36)were used to explore the effect of rice rhizosphere aeration on Cd uptake and accumulation.Aeration in the nutrient soluti on influe need the agronomic characteristics in duced by Cd-stress,such as the in creases of rice root length and root vigor,but the reductions of plant height and shoot dry weight.Aeration also alleviated the decreasing effects of Cd stress on antioxidant enzyme activities and soluble protein,malonaldehyde and nicotianamine contents in rice.Moreover,with aeration treatment,the accumulation and bioavailability of metal elements changed significantly,with a Cd increase and an Fe reduction in both rice genotypes.In addition,at the molecular level,aeration upregulated the expression of Fe-inducible genes(such as OsIRTI,OsNRAMPI,OsYSL15 and OsNAS3).Furthermore,as a Cd^(2+)/Fe^(2+) transporter,the high transcription level of OsNRAMPI can elevate the Cd uptake and translocation in rice due to the Fe reduction caused by aeration and Cd-exposure,which indicated that OsNRAMPI might play a crucial role in the effect of aeration on Cd uptake and accumulation.展开更多
基金financial support of the National Natural Science Foundation of China(21776122).
文摘Due to a prolonged operation time and low mass transfer efficiency, the primary challenge in the aeration process of non-Newtonian fluids is the high energy consumption, which is closely related to the form and rate of impeller, ventilation, rheological properties and bubble morphology in the reactor. In this perspective, through optimal computational fluid dynamics models and experiments, the relationship between power consumption, volumetric mass transfer rate(kLa) and initial bubble size(d0) was constructed to establish an efficient operation mode for the aeration process of non-Newtonian fluids. It was found that reducing the d0could significantly increase the oxygen mass transfer rate, resulting in an obvious decrease in the ventilation volume and impeller speed. When d0was regulated within 2-5 mm,an optimal kLa could be achieved, and 21% of power consumption could be saved, compared to the case of bubbles with a diameter of 10 mm.
基金financially supported by the National Natural Science Foundation of China(41877240)National Key Research and Development Program of China(2018YFC1802300)Scientific Research Foundation of Graduate School of Southeast University(YBPY2154).
文摘In-site soil flushing and aeration are the typical synergetic remediation technology for contaminated sites.The surfactant present in flushing solutions is bound to affect the aeration efficiency.The purpose of this study is to evaluate the effect of surfactant frequently used in soil flushing on the oxygen mass transfer in micro-nano-bubble(MNB)aeration system.Firstly,bio-surfactants and chemical surfactants were used to investigate their effects on Sauter mean diameter of bubble(dBS),gas holdup(ε),volumetric mass-transfer coefficient(kLa)and liquid-side mass-transfer coefficient(kL)in the MNB aeration system.Then,based upon the experimental results,the Sardeing's and Frossling's models were modified to describe the effect of surfactant on kL in the MNB aeration.The results showed that,for the twenty aqueous surfactant solutions,with the increase in surfactant concentration,the value of dBS,kLa and kL decreased,while the value ofεand gas-liquid interfacial area(a)increased.These phenomena were mainly attributed to the synergistic effects of immobile bubble surface and the suppression of coalescence in the surfactant solutions.In addition,with the presence of electric charge,MNBs in anionic surfactant solutions were smaller and higher in number than in non-ionic surfactant solutions.Furthermore,the accumulation of surfactant on the gas-liquid interface was more conspicuous for small MNB,so the reduction of kL in anionic surfactant solutions was larger than that in non-ionic surfactant solutions.Besides,the modified Frossling's model predicted the effect of surfactant on kL in MNB aeration system with reasonable accuracy.
基金the financial support by the National Natural Science Foundation of China(52230004 and 52293445)the Key Research and Development Project of Shandong Province(2020CXGC011202-005)the Shenzhen Science and Technology Program(KCXFZ20211020163404007 and KQTD20190929172630447).
文摘The potential for reducing greenhouse gas(GHG)emissions and energy consumption in wastewater treatment can be realized through intelligent control,with machine learning(ML)and multimodality emerging as a promising solution.Here,we introduce an ML technique based on multimodal strategies,focusing specifically on intelligent aeration control in wastewater treatment plants(WWTPs).The generalization of the multimodal strategy is demonstrated on eight ML models.The results demonstrate that this multimodal strategy significantly enhances model indicators for ML in environmental science and the efficiency of aeration control,exhibiting exceptional performance and interpretability.Integrating random forest with visual models achieves the highest accuracy in forecasting aeration quantity in multimodal models,with a mean absolute percentage error of 4.4%and a coefficient of determination of 0.948.Practical testing in a full-scale plant reveals that the multimodal model can reduce operation costs by 19.8%compared to traditional fuzzy control methods.The potential application of these strategies in critical water science domains is discussed.To foster accessibility and promote widespread adoption,the multimodal ML models are freely available on GitHub,thereby eliminating technical barriers and encouraging the application of artificial intelligence in urban wastewater treatment.
文摘Landfilled organic waste, in the presence of oxygen, can undergo aerobic decomposition facilitated by heterotrophic microorganisms. Aerobic degradation of solid waste can quickly consume available oxygen thus curtailing further degradation. The aim of this study was the investigation of a low-cost method of replenishing oxygen consumed in landfilled waste. Three 2D lysimeters were established to investigate the effectiveness of stand-alone, vertical ventilation pipes inserted into waste masses. Two different configurations of ventilation were tested with the third lysimeter acting as an unventilated control. Lysimeters were left uninsulated and observed over the course of 6 months with regular collection of gas and leachate samples. Lysimeters were then simulated for Oxygen (O<sub>2</sub>) and Nitrous oxide (N<sub>2</sub>O) to analyze the denitrification contributions of each. The experiment revealed that a single ventilation pipe can increase the mean oxygen level of a 1.7 m × 1.0 m area by up to 13.5%. It also identified that while increasing the density of ventilation pipes led to increased O<sub>2</sub> levels, this increase was not significant at the 0.05 probability level. A single vent averaged 13.67% O<sub>2</sub> while inclusion of an additional vent in the same area only increased the average to 14.59%, a 6.7% increase. Simulation helped to verify that lower ventilation pipe placement density may be more efficient as in addition to the effect on oxygenation, denitrification efficiency may increase. Simulations of N<sub>2</sub>O production estimated between 8% - 20% more N<sub>2</sub>O being generated with lower venting density configurations.
基金supported by the Metropolitan Water Reclamation District of Greater Chicago(Requisition No.1449764).
文摘The Chicago Area Waterway System(CAWS)is a 133.9 km branching network of navigable waterways controlled by hydraulic structures,in which the majority of the flow is treated wastewater effluent and there are periods of substantial combined sewer overflows.The CAWS comprises a network of effluent dominated streams.More stringent dissolved oxygen(DO)standards and a reduced flow augmentation allowance have been recently applied to the CAWS.Therefore,a carefully calibrated and verified one-dimensional flow and water quality model was applied to the CAWS to determine emission-based real-time control guidelines for the operation of flow augmentation and aeration stations.The goal of these guidelines was to attain DO standards at least 95%of the time.The“optimal”guidelines were tested for representative normal,dry,and wet years.The finally proposed guidelines were found in the simulations to attain the 95%target for nearly all locations in the CAWS for the three test years.The developed operational guidelines have been applied since 2018 and have shown improved attainment of the DO standards throughout the CAWS while at the same time achieving similar energy use at the aeration stations on the Calumet River system,greatly lowered energy use on the Chicago River system,and greatly lowered discretionary diversion from Lake Michigan,meeting the recently enacted lower amount of allowed annual discretionary diversion.This case study indicates that emission-based real-time control developed from a well calibrated model holds potential to help many receiving water bodies achieve high attainment of water quality standards.
基金supported by the Provincial Natural Science Foundation of Zhejiang (Grant No. Y3100270)the Twelfth Five-Year Science and Technology Project (Grant No. 2011BAD16B14)
文摘In order to clarify the effects of aeration on root nitrogen metabolism in rice seedlings,rice cultivars Guodao 6 (indica) and Xiushui 09 (japonica) were investigated for root growth,the activities of glutamine synthetase (GS),glutamic acid-pyruvic acid transaminase (GPT) and glutamic acid oxaloacetate transaminase (GOT),the nitrate (NO 3-N) concertration,the contents of free amino acids and soluble sugar in root under hydroponics with continuous aeration treatment.The results showed that rice seedlings grown in oxygenation solutions had higher root dry matter,longer root length,stronger root activity and larger root absorption area compared with the control.In addition,the contents of soluble sugar,root vigor and the activities of GS,GOT and GPT in the aeration solutions were higher than those in the control.The results also indicated that the activities of enzymes involved in root nitrogen metabolism of Xiushui 09 were enhanced by aeration,however,there was no significant influence on root nitrogen metabolism of Guodao 6,which suggested that effect of oxygenation on rice root nitrogen metabolism might be genotype-specific.
基金The National Hi Tech Research and Development Program(863) of China(No. 2001AA644010 2003AA644020)
文摘When municipal solid waste(MSW) with high content of food waste is landfilled, the rapid hydrolysis of food waste results in the imbalance of anaerobic metabolism in the landfill layer, indicated by accumulation of volatile fatty acids(VFA) and decrease of pH value. This occurrence could lead to long lag time before the initiation of methanogenesis and to the production of strong leachate. Simulated landfill columns with forced aeration, with natural ventilation, and with no aeration, were monitored regarding their organics degradation rate with leachate recirculation. Hydrolysis reactions produced strong leachate in the column with no aeration. With forced aeration, the produced VFA could be effectively degraded, leading to the reduction in COD of the leachate effluent since the week 3. The CH_4 in the landfill gas from the column with aeration rate of 0.39 m3/(m3·d) and frequency of twice/d, leachate recirculation rate of 12.2 mm/d and frequency of twice/d, could amount to 40%(v/v) after only 20 weeks. This amount had increased up to 50% afterward even with no aeration. Most of COD in the recirculated leachate was removed. Using natural ventilation, CH_4 could also be produced and the COD of the leachate effluent be reduced after 10 weeks of operation. However, the persistent existence of oxygen in the landfill layer yielded instability in methanogenesis process.
基金the National Natural Science Foundation of China(No.51374035)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201351)the Program for New Century Excellent Talents in University of China(No.NCET-13-0669).
文摘Despite lots of techniques in improving the heap leaching performance,many constraints on the industrial applications remain.We proposed a correspondingly effective and new idea of introducing forced aeration to improve the bad permeability and leaching effect of Yangla Copper Mine(YCM)during heap leaching.The dual-media theory was employed to study the impact mechanism of forced aeration on the variations of porous and fractured media during the column leaching experiments.An X-Ray Computed Tomography(CT)set was utilized to perform the pore imaging of the specimens and the fracture morphology of the particles within the columns was analyzed by Scanning Electron Microscope(SEM)as aeration rate(AR)changed.The results show that there exists copious fine particles within the heap of YCM,the particle size distribution of which is not reasonable.The forced aeration can not only promote the development of the porous and fractured structures but effectively break the blocked seepage paths.Then the leaching degree is improved and the seepage performance of the solute within the solution is enhanced.Therefore,the forced aeration is probable of making the leaching performance greatly improved.
基金Supported by the Post-Doctoral Training Program from Research Affairs and Graduate School,Khon Kaen University(KKU).Thailand(Grant no.59153)
文摘To improve the efficiency of ethanol production in a batch fermentation from sweet sorghum juice under a very high gravity(VHG)condition(~290 g/L of total sugar)by Saccharomyces cerevisiae NP01,repeatedbatch fermentation under an aerated condition(2.5 vvm for the first 4 h during every cycle)was done in a5-L fermenter.The average ethanol concentration(P),productivity(Qp)and yield(Yp/s)for five successive cycles were 112.31 g/L,1.55 g/L·h^-1 and 0.44,respectively with 80.97%sugar consumption.To complete sugar consumption,the total sugar of the juice was reduced to a high gravity(HG)level(~240 g/L).The results showed that yeast extract was not necessary for ethanol production,and aeration during every other cycle i.e.,alternating cycles,was sufficient to promote both yeast growth and ethanol production.The average P,Qpand Yp/svalues for eight successive cycles with aeration during alternating cycles were97.58 g/L,1.98 g/Láh and 0.41,respectively with 91.21%sugar consumption.The total fatty acids in the yeast cells under the aerated condition were^50%higher than without aeration,irrespective the initial sugar concentration,whereas the ergosterol contents under aeration condition were^29%to 49%higher than those without aeration.
文摘Instream aeration has been used as a supplement to secondary treatment or a substitute for tertiary treatment for meeting dissolved oxygen (DO) standards in rivers. Many studies have used water quality models to determine the number, location, and capacity of instream aeration stations (IASs) needed to meet DO standards in combination with other pollution control measures. DO concentrations have been improved in the North Shore Channel and North Branch Chicago River by the Devon Avenue IAS for more than 35 years. A study was initiated to determine whether it was better to rehabilitate or relocate this station and to determine appropriate operational guidance for the IAS at the selected location. A water quality model capable of simulating DO concentrations during unsteady flow was used to evaluate the proper location for an IAS and operational guidance for this IAS. Three test years, a dry year, a wet year, and an extreme year, were considered in the evaluation. The study found that the Devon Avenue IAS should be rehabilitated as this location performed as well as or better than any of 10 alternative locations. According to the new operational guidance for this IAS, the amount of time with blowers operating could be substantially reduced compared to traditional operations while at the same time the attainment of the DO standards could be increased. This study shows that a carefully designed modeling study is key to effective selection, location, and operation of IASs such that attainment of DO standards can be maximized while operation hours of blowers can be minimized.
基金supported by the National Natural Science Foundation of China (51309192)the National Key Research and Development Program of China (2016YFC0400201)the Fundamental Research Funds for the Central Universities, China (Z109021510)
文摘Aerated irrigation has been proven to increase crop production and quality, but studies on its environmental impacts are sparse. The effects of aeration and irrigation regimes on soil CO2 and N2O emissions in two consecutive greenhouse tomato rotation cycles in Northwest China were studied via the static closed chamber and gas chromatography technique. Four treatments, aerated deficit irrigation(AI1), non-aerated deficit irrigation(CK1), aerated full irrigation(AI2) and non-aerated full irrigation(CK2), were performed. The results showed that the tomato yield under aeration of each irrigation regime increased by 18.8% on average compared to non-aeration, and the difference was significant under full irrigation(P〈0.05). Full irrigation significantly increased the tomato yield by 23.9% on average in comparison to deficit irrigation. Moreover, aeration increased the cumulative CO2 emissions compared to non-aeration, and treatment effects were significant in the autumn-winter season(P〈0.05). A slight increase of CO2 emissions in the two seasons was observed under full irrigation(P〉0.05). There was no significant difference between aeration and non-aeration in soil N2O emissions in the spring-summer season, whereas aeration enhanced N2O emissions significantly in the autumn-winter season. Furthermore, full irrigation over the two seasons greatly increased soil N2O emissions compared to the deficit irrigation treatment(P〈0.05). Correlation analysis indicated that soil temperature was the primary factor influencing CO2 fluxes. Soil temperature, soil moisture and NO3^- were the primary factors influencing N2O fluxes. Irrigation coupled with particular soil aeration practices may allow for a balance between crop production yield and greenhouse gas mitigation in greenhouse vegetable fields.
文摘Free surface flows aeration potential causing the in macro- and intermediate flow characteristics to vary roughness conditions have a high with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB) of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m^2/s and 0.09 m^2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.
基金Supported by the National Natural Science Foundation of China (No. 29792074) and SINOPEC.
文摘A novel surface aeration configuration featured with aself-rotating and floating baffle (SRFB) and a Rushton disk turbine(DT) with a perforated disk has been developed. The SRFB, consistedof 12 fan blades twisted By an angle of 30 deg to the horizontalplane, is incorporated onto the impeller shaft to improve gasentrainment, bubble Breakup, mixing in a φ 154 mm agitated vessel.This new configuration is compared to the conventional DT surfaceAeration experimentally. The results suggest that the criticalimpeller speed for onset of gas entrainment is lower for The newconfiguration and it demands greater power consumption. Moreover, theSRFB system produces 30/100-168/100 Higher volumetric mass transfercoefficient per unit power input than that obtained in theconventional DT surface Aerator under the same operation conditions.
基金This work was supported by National Science Foundation for Excellent Young Scholars,China(No.51722401)Key Project of National Natural Science Foundation,China(No.51734001)Fundamental Research Funds for the Central Universities(No.FRF-TP-18-003C1).
文摘Bacterial community dynamics and copper leaching with applied forced aeration were investigated during low-grade copper sulphide bioleaching to obtain better bioleaching efficiency.Results illustrated that appropriate aeration improved bacterial concentrations and leaching efficiencies.The highest bacterial concentration and Cu^(2+)concentration after 14-d leaching were 7.61×10^(7) cells·mL^(−1) and 704.9 mg·L^(−1),respectively,at aeration duration of 4 h·d^(−1).The attached bacteria played a significant role during bioleaching from 1 to 7 d.However,free bacteria dominated the bioleaching processes from 8 to 14 d.This phenomenon was mainly caused by the formation of passivation layer through Fe3+hydrolysis along with bioleaching,which inhibited the contact between the attached bacteria and ore.Meanwhile,16S rDNA analysis verified the effect of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans on the bioleaching process.The results demonstrate the importance of free and attached bacteria in bioleaching.
基金Supported by Key Project of National Water Pollution Control and Treatment Science and Technology(2014ZX07211-001)Demonstration Study on Integration Model of Environmental Public Utilities in Industrial Parks of Key Watershed(2014ZX07211-001-04)
文摘In order to protect quality of Baiyangdian surface water and Gaoyang groundwater,the project is applied to process printing and dyeing wastewater that contains complicated compositions,high concentrations of organics and SS,and lots of pollutants difficult to degrade by microorganism. The process and operating parameters of project are optimized and debugged,and its economic and environmental benefits are analyzed.The results show that the process of coagulation sedimentation-hydrolytic acidification with aeration tank-biological aerated filter-active sand filter is applied in Gaoyang Sewage Treatment Plant. The design scale of sewage treatment plant is 120000 m^3/d. The influent is as following: COD is 669mg/L; SS is 424mg/L; NH_3-N is 8.83mg/L; TP is 6.03mg/L. After the process,the best removal rates of COD,SS,NH_3-N and TP are 93. 5%,98. 8%,97. 1% and 96. 2%,respectively. The various indexes of effluent water complied with standard A of the first order in Pollutants Emission Standard of Urban Wastewater Treatment Plant( GB 18918-2002). The processing cost is only 0. 807 yuan/m^3. As a result,the project construction and operation not only improve the environment,but also promote regional economic development. Process design and operating parameters provide an important reference value for the printing and dyeing wastewater treatment industry.
文摘A practice wastewater treatment plant was operated using intermittent aeration activated sludge process to enhance biological nitrogen and phosphorus removal. When the influent concentrations of COD Cr , BOD 5, TN, TP, NH 3\|N, TKN, and SS varied in a range of 207.5—1640 mg/L, 61.8—637 mg/L, 28.5—75.6 mg/L, 4.38—20.2 mg/L, 13.6—31.9 mg/L, 28.5—75.6 mg/L, and 111—1208 mg/L, the effluent means were less than 50 mg/L, 20 mg/L, 5 mg/L, 1.0 mg/L, 5 mg/L, 10 mg/L, and 20 mg/L, respectively. Based on a long time of operating results, this process is very suitable for nutrient biological removal for treating the municipal wastewater those water characteristics are similar as that of the Songjiang Municipal Waste Water Treatment Plant(SJMWTP).
文摘In order to develop an effective MIBK removal method of H 2TaF 7 solution in tantalum extraction process, MIBK removal from aqueous solution by the aeration method was investigated by using an aeration column with the dimensions of 78 mm in inner diameter and 1 100 mm in length. The effects of aeration conditions on aerating efficiency were investigated in the ranges of temperature 303 333 K, airflow rate 50 300 L/h,volume of solution 1 600 3 200 mL. Aerating efficiency increases with the increase of temperature and airflow rate. MIBK in aqueous solution can be removed from 0.058 mol/L to 0.002 mol/L at 50 ℃,airflow rate 200 L/h, volume of solution 2 400 mL and aeration time 1h. The experimental results show that MIBK can be removed effectively from aqueous solution by the aeration method.
文摘The effects of soil aeration on physiological characters and root tuber yield of Ipomoea batatas (L.) Lam. CV Lushu7 and Xushu18 were studied. The results showed that soil aeration improvement could increase ATP content and ATPase activity in functional leaves and root tubers and ABA content in root tubers. It also accelerated the transportation of 14C-photosynthate from leaves to root tubers and enhanced dry matter distribution in root tubers and thus root tuber yield was significantly raised. The role of ATP, ATPase and ABA in accelerating the transportation of 14C-photosynthate was discussed based on the changes of soluble carbonhydrate content in sweet potato plant.
基金Supported by Science and Technology Support Program of Jiangxi Province(20121BBF60037)
文摘Application effect of micropore aeration technique in rearing process of summer fingerlings of Silurus asotus from Poyang lake was studied. This study provides an efficient safe aeration solution for large-scale fingerling rearing of Silurus asotus.
基金supported by the National Key Research and Development Plan of China(Grant No.2017YFD0801102)the Central Public-Interest Scientific Institution Basal Research Fund,China(Grant No.2017RG006-5)+1 种基金the National Science Foundation of China(Grant No.31701407)the Chinese Academy of Agricultural Sciences to the Scientific and Technical Innovation Team.
文摘Different cadmium(Cd)-accumulated rice genotypes(Erjiunan 1 and Fupin 36)were used to explore the effect of rice rhizosphere aeration on Cd uptake and accumulation.Aeration in the nutrient soluti on influe need the agronomic characteristics in duced by Cd-stress,such as the in creases of rice root length and root vigor,but the reductions of plant height and shoot dry weight.Aeration also alleviated the decreasing effects of Cd stress on antioxidant enzyme activities and soluble protein,malonaldehyde and nicotianamine contents in rice.Moreover,with aeration treatment,the accumulation and bioavailability of metal elements changed significantly,with a Cd increase and an Fe reduction in both rice genotypes.In addition,at the molecular level,aeration upregulated the expression of Fe-inducible genes(such as OsIRTI,OsNRAMPI,OsYSL15 and OsNAS3).Furthermore,as a Cd^(2+)/Fe^(2+) transporter,the high transcription level of OsNRAMPI can elevate the Cd uptake and translocation in rice due to the Fe reduction caused by aeration and Cd-exposure,which indicated that OsNRAMPI might play a crucial role in the effect of aeration on Cd uptake and accumulation.