It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation...In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.I...Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.展开更多
This study mainly investigates the mechanical mechanism of overlying strata breaking and the development of fractured zones during close-distance coal seam group mining in the Gaojialiang coal mine.First,a mechanical ...This study mainly investigates the mechanical mechanism of overlying strata breaking and the development of fractured zones during close-distance coal seam group mining in the Gaojialiang coal mine.First,a mechanical model for the second"activation"of broken overlying strata is established,and the related mechanical"activation"conditions are obtained.A recursive formula for calculating the separation distance of overlying strata is deduced.Second,a height determining method for predicting the height of fractured zones during close-distance coal seam group mining is proposed based on two values,namely,the separation distance and ultimate subsidence value of overlying strata.This method is applied to calculate the fractured zone heights in nos.20107 and 20307 mining faces.The calculated results are almost equal to the field observation results.Third,a modified formula for calculating the height of a waterflowing fractured zone is proposed.A comparison of the calculated and observed results shows that the errors are small.The height determining method and modified formula not only build a theoretical foundation for water conservation mining at the Gaojialiang coal mine,but also provide a reference for estimating the height of water-flowing fractured zones in other coal mines with similar conditions.展开更多
Prediction of the height of a water-flowing fracture zone(WFFZ)is the foundation for evaluating water bursting conditions on roof coal.By taking the Binchang mining area as the study area and conducting an in-depth st...Prediction of the height of a water-flowing fracture zone(WFFZ)is the foundation for evaluating water bursting conditions on roof coal.By taking the Binchang mining area as the study area and conducting an in-depth study of the influence of coal seam thickness,burial depth,working face length,and roof category on the height of a WFFZ,we proposed that the proportion of hard rock in different roof ranges should be used to characterise the influence of roof category on WFFZ height.Based on data of WFFZ height and its influence index obtained from field observations,a prediction model is established for WFFZ height using a combination of a genetic algorithm and a support-vector machine.The reliability and superiority of the prediction model were verified by a comparative study and an engineering application.The results show that the main factors affecting WFFZ height in the study area are coal seam thickness,burial depth,working face length,and roof category.Compared with multiple-linear-regression and back-propagation neural-network approaches,the height-prediction model of the WFFZ based on a genetic-algorithm support-vector-machine method has higher training and prediction accuracy and is more suitable for WFFZ prediction in the mining area.展开更多
The damage process of fractured rock mass showed that the fracture in rocks induced roof collapse in Yangchangwan Coal Mine, China. The rock mass was particularly weak and fractured. There occurred 6 large-scale dynam...The damage process of fractured rock mass showed that the fracture in rocks induced roof collapse in Yangchangwan Coal Mine, China. The rock mass was particularly weak and fractured. There occurred 6 large-scale dynamical roof falls in the excavation disturbed zone (EDZ) with the collapsing volume of 216 m^3. First, the field detailed geological environment, regional seismic dynamics, and dynamic instability of roadways were generally investigated. Second, the field multiple-index monitoring measurements for detecting the deep delamination of the roof, convergence deformation, bolt-cable load, acoustic emission (AE) characteristic parameters, total AE events, AE energy-releasing rate, rock mass fracture, and damage were arranged. Finally, according to the time-space-strength relations, a quantitative assessment of the influence of rock-mass damage on the dynamic roof instability was accomplished.展开更多
The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity minin...The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.展开更多
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when...Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.展开更多
Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North ...Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate.展开更多
As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mini...As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mining and the effects of longwall mining on the underground water while mining under surface water bodies and underground aquifers.In order to study this problem,piezometers for monitoring underground water levels were installed above the longwall panels in an American coalmine.Large amounts of pre-mining,during mining and post-mining monitoring data were collected.Based on the data,the heights of fractured zones were obtained and the effects of longwall mining on the underground water were studied.The results demonstrate that when the piezometer monitoring wells had an interburden thickness of less than 72.7 m,the groundwater level decreased immediately to immeasurable levels and the wells went dry after undermining the face of longwall.The height of the fractured zone is 72.7-85.3 m in the geological and mining conditions.The results also show that the calculated values of fractured zones by the empirical formulae used in China are smaller than the actual results.Therefore,it is not always safe to use them for analyses while mining under water bodies.展开更多
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu...Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs.展开更多
The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the...The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the mechanical properties of the rock and elastic wave propagation,resulting in equally varying seismic responses at different scales.The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation.In this study,we characterise the discontinuity network of the Balmuccia peridotite(BP)in the IvreaeVerbano Zone(IVZ),northwestern Italy.This geological body is the focus of the Drilling the Ivrea eVerbano zonE(DIVE),an international continental scientific drilling project,and two active seismic surveys,SEismic imaging of the Ivrea ZonE(SEIZE)and high-resolution SEIZE(Hi-SEIZE),which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging.For fracture characterisation,we developed two drone-based digital outcrop models(DOMs)at two different resolutions(10^(-3)-10 m and 10^(-1)-10^(3)m),which allowed us to quantitatively characterise the orientation,size,and intensity of the main rock discontinuities.These properties affect the seismic velocity and consequently the interpretation of the seismic data.We found that(i)the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature;(ii)the discontinuity sizes follow a power-law distribution,indicating similarity across scales,and(iii)discontinuity intensity is not uniformly distributed along the outcrop.Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey,suggesting that the low P-wave velocities observed can be related to the discontinuity network,and provide the basic topological parameters(orientation,density,distribution,and aperture)of the fracture network unique to the BP.These,in turn,can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response.展开更多
Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests...Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.展开更多
Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economi...Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economical,and robust tunnel reinforcement techniques.This paper explores fiber reinforced polymer(FRP)and steel fiber reinforced concrete(SFRC)technologies,which have emerged as viable solutions for enhancing tunnel structures.FRP is celebrated for its lightweight and high-strength attributes,effectively augmenting load-bearing capacity and seismic resistance,while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments.Nonetheless,current research predominantly focuses on experimental analysis,lacking comprehensive theoretical models.To bridge this gap,the cohesive zone model(CZM),which utilizes cohesive elements to characterize the potential fracture surfaces of concrete/SFRC,the rebar-concrete interface,and the FRP-concrete interface,was employed.A modeling approach was subsequently proposed to construct a tunnel segment model reinforced with either SFRC or FRP.Moreover,the corresponding mixed-mode constitutive models,considering interfacial friction,were integrated into the proposed model.Experimental validation and numerical simulations corroborated the accuracy of the proposed model.Additionally,this study examined the reinforcement design of tunnel segments.Through a numerical evaluation,the effectiveness of innovative reinforcement schemes,such as substituting concrete with SFRC and externally bonding FRP sheets,was assessed utilizing a case study from the Fuzhou Metro Shield Tunnel Construction Project.展开更多
Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercours...Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercourses as well as passages for inrush in mines and tunnels.An accurate height prediction of water flowing fractured zones is a key issue in today's mine water prevention and control.The theory of leveraging BP artificial neural network in height prediction of water flowing fractured zones is analysed and applied in Qianjiaying Mine as an example in this paper.Per the comparison with traditional calculation results,the BP artificial neural network better reflects the geological conditions of the research mine areas and produces more objective,accurate and reasonable results,which can be applied to predict the height of water flowing fractured zones.展开更多
Taking 91105 working face as the research object, the observation method of water flowing fracture<span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> zo...Taking 91105 working face as the research object, the observation method of water flowing fracture<span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> zone and the layout of mining holes were determined by analyzing the field geological structure</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It was shown that the fractured zone height and the ratio given by the measured method were 52.33 and 12.46, respectively. By the numerical simulation method with the software of UDEC, the fractured zone height and the ratio were 42.5 and 10.12. By comparison of measured height data and UDEC numerical simulation, there were some differences between the measured height and the calculated results of UDEC numerical simulation method. The method of simulation can be used as the technical basis for the design of waterproof coal pillar in the future.</span>展开更多
In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility ...In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact.展开更多
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient applicat...Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.展开更多
Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-ex...Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method (FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory (URL) Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks (DFNs) of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation.展开更多
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.
基金supported by the Key Projects of Natural Science Foundation of China(No.41931284)the Scientific Research Start-Up Fund for High-Level Introduced Talents of Anhui University of Science and Technology(No.2022yjrc21).
文摘In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金This work was supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110304)the Na-tional Natural Science Foundation of China(Grant Nos.42077246 and 52278412).
文摘Grouting is a widely used approach to reinforce broken surrounding rock mass during the construction of underground tunnels in fault fracture zones,and its reinforcement effectiveness is highly affected by geostress.In this study,a numerical manifold method(NMM)based simulator has been developed to examine the impact of geostress conditions on grouting reinforcement during tunnel excavation.To develop this simulator,a detection technique for identifying slurry migration channels and an improved fluid-solid coupling(FeS)framework,which considers the influence of fracture properties and geostress states,is developed and incorporated into a zero-thickness cohesive element(ZE)based NMM(Co-NMM)for simulating tunnel excavation.Additionally,to simulate coagulation of injected slurry,a bonding repair algorithm is further proposed based on the ZE model.To verify the accuracy of the proposed simulator,a series of simulations about slurry migration in single fractures and fracture networks are numerically reproduced,and the results align well with analytical and laboratory test results.Furthermore,these numerical results show that neglecting the influence of geostress condition can lead to a serious over-estimation of slurry migration range and reinforcement effectiveness.After validations,a series of simulations about tunnel grouting reinforcement and tunnel excavation in fault fracture zones with varying fracture densities under different geostress conditions are conducted.Based on these simula-tions,the influence of geostress conditions and the optimization of grouting schemes are discussed.
基金supported by the National Natural Science Foundation of China(Nos.51474137,and 51574154)Shandong Province Natural Science Fund(No.ZR201709180101)+1 种基金Tai’shan Scholar Engineering Construction Fund of Shandong Province of ChinaPostgraduate Technology Innovation Project of Shandong University of Science and Technology(No.SDKDYC 180103).
文摘This study mainly investigates the mechanical mechanism of overlying strata breaking and the development of fractured zones during close-distance coal seam group mining in the Gaojialiang coal mine.First,a mechanical model for the second"activation"of broken overlying strata is established,and the related mechanical"activation"conditions are obtained.A recursive formula for calculating the separation distance of overlying strata is deduced.Second,a height determining method for predicting the height of fractured zones during close-distance coal seam group mining is proposed based on two values,namely,the separation distance and ultimate subsidence value of overlying strata.This method is applied to calculate the fractured zone heights in nos.20107 and 20307 mining faces.The calculated results are almost equal to the field observation results.Third,a modified formula for calculating the height of a waterflowing fractured zone is proposed.A comparison of the calculated and observed results shows that the errors are small.The height determining method and modified formula not only build a theoretical foundation for water conservation mining at the Gaojialiang coal mine,but also provide a reference for estimating the height of water-flowing fractured zones in other coal mines with similar conditions.
文摘Prediction of the height of a water-flowing fracture zone(WFFZ)is the foundation for evaluating water bursting conditions on roof coal.By taking the Binchang mining area as the study area and conducting an in-depth study of the influence of coal seam thickness,burial depth,working face length,and roof category on the height of a WFFZ,we proposed that the proportion of hard rock in different roof ranges should be used to characterise the influence of roof category on WFFZ height.Based on data of WFFZ height and its influence index obtained from field observations,a prediction model is established for WFFZ height using a combination of a genetic algorithm and a support-vector machine.The reliability and superiority of the prediction model were verified by a comparative study and an engineering application.The results show that the main factors affecting WFFZ height in the study area are coal seam thickness,burial depth,working face length,and roof category.Compared with multiple-linear-regression and back-propagation neural-network approaches,the height-prediction model of the WFFZ based on a genetic-algorithm support-vector-machine method has higher training and prediction accuracy and is more suitable for WFFZ prediction in the mining area.
基金supported by the National Natural Science Foundation of China (No.10402033 and No.10772144)
文摘The damage process of fractured rock mass showed that the fracture in rocks induced roof collapse in Yangchangwan Coal Mine, China. The rock mass was particularly weak and fractured. There occurred 6 large-scale dynamical roof falls in the excavation disturbed zone (EDZ) with the collapsing volume of 216 m^3. First, the field detailed geological environment, regional seismic dynamics, and dynamic instability of roadways were generally investigated. Second, the field multiple-index monitoring measurements for detecting the deep delamination of the roof, convergence deformation, bolt-cable load, acoustic emission (AE) characteristic parameters, total AE events, AE energy-releasing rate, rock mass fracture, and damage were arranged. Finally, according to the time-space-strength relations, a quantitative assessment of the influence of rock-mass damage on the dynamic roof instability was accomplished.
基金supported by the National Natural Science Foundation of China (No.51774111)Henan province science and technology innovation outstanding talent fund of China (No.184200510003)
文摘The height of fractured zone(HFZ) at the high-intensity longwall mining panel plays a vital role in the safety analysis of coal mining under bodies of water. This paper described definitions of the highintensity mining. The processes of overburden failure transfer(OFT) were analyzed, which were divided into the development stage and the termination stage. Through theoretical analysis, the limited suspension-distance and the limited overhanging distance were proposed to judge the damage of each stratum. Mechanical models of strata suspended integrity and overhanging stability were established.A theoretical method to predict the HFZ at the high-intensity longwall mining panel was put forward based on the processes of OFT. Taking a high-intensity longwall mining panel(No. 11915 panel) as an example, the theoretical method proposed, the engineering analogy and the empirical formulas in the Regulation were used to predict the HFZ. The results show that the theoretical result is consistent with the engineering analogies' result and empirical formulas' result. The rationality and reliability of the theoretical method proposed is verified.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities 2014QNA88the National Natural Science Foundation(No.41674133)
文摘Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production.
基金supported by the National Natural Science Foundation of China(Grant No.41574088)the Key Program of Chinese Central Government for Basic Scientific Research Operations in Commonwealth Research Institutes(Grant No.ZDJ2019-16)。
文摘Tectonic stress fields are the key drivers of tectonic events and the evolution of regional structures.The tectonic stress field evolution of the Tanlu fault zone in Shandong Province,located in the east of the North China Craton(NCC),may have preserved records of the NCC’s tectonic history.Borehole television survey and hydraulic fracturing were conducted to analyze the paleo and present tectonic stress fields.Three groups of tensile fractures were identified via borehole television,their azimuths being NNW-SSE,NW-SE and NE-SW,representing multiple stages of tectonic events.Hydraulic fracturing data indicates that the study region is experiencing NEE-SWW-oriented compression and nearly-N-Soriented extension,in accordance with strike-slip and compression.Since the Cretaceous,the orientation of the extensional stress has evolved counterclockwise and sequentially from nearly-NW-SE-oriented to NE-SW-oriented and even nearly N-S-oriented,the stress state having transitioned from strike-slip-extension to strike-slip-compression,in association with the rotating and oblique subduction of the Pacific Plate beneath the NCC,with the participation of the Indian Plate.
基金sponsored by the National Natural Science Foundation of China (No.50974053)Pennsylvania Service Corporation at Waynesburg,USA
文摘As mining depth becomes deeper and deeper,the possibility of undermining overburden aquifers is increasing.It is very important for coal miners to undertake studies on the height of fractured zone during longwall mining and the effects of longwall mining on the underground water while mining under surface water bodies and underground aquifers.In order to study this problem,piezometers for monitoring underground water levels were installed above the longwall panels in an American coalmine.Large amounts of pre-mining,during mining and post-mining monitoring data were collected.Based on the data,the heights of fractured zones were obtained and the effects of longwall mining on the underground water were studied.The results demonstrate that when the piezometer monitoring wells had an interburden thickness of less than 72.7 m,the groundwater level decreased immediately to immeasurable levels and the wells went dry after undermining the face of longwall.The height of the fractured zone is 72.7-85.3 m in the geological and mining conditions.The results also show that the calculated values of fractured zones by the empirical formulae used in China are smaller than the actual results.Therefore,it is not always safe to use them for analyses while mining under water bodies.
基金Supported by the National Natural Science Foundation of China(Grant No.51604236)Science and Technology Program of Sichuan Province(Grant No.2018JY0436)the Sichuan Province Youth Science and Technology Innovation Team Project(Grant No.2016TD0016)
文摘Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs.
基金the Swiss National Science Foundation for the grant PP00P2_187199 of project OROG3NY.
文摘The presence of discontinuities(e.g.faults,fractures,veins,layering)in crystalline rocks can be challenging for seismic interpretations because the wide range of their size,orientation,and intensity,which controls the mechanical properties of the rock and elastic wave propagation,resulting in equally varying seismic responses at different scales.The geometrical characterisation of adjacent outcrop discontinuity networks allows a better understanding of the nature of the subsurface rocks and aids seismic interpretation.In this study,we characterise the discontinuity network of the Balmuccia peridotite(BP)in the IvreaeVerbano Zone(IVZ),northwestern Italy.This geological body is the focus of the Drilling the Ivrea eVerbano zonE(DIVE),an international continental scientific drilling project,and two active seismic surveys,SEismic imaging of the Ivrea ZonE(SEIZE)and high-resolution SEIZE(Hi-SEIZE),which aim to resolve the subsurface structure of the DIVE drilling target through high-resolution seismic imaging.For fracture characterisation,we developed two drone-based digital outcrop models(DOMs)at two different resolutions(10^(-3)-10 m and 10^(-1)-10^(3)m),which allowed us to quantitatively characterise the orientation,size,and intensity of the main rock discontinuities.These properties affect the seismic velocity and consequently the interpretation of the seismic data.We found that(i)the outcropping BP discontinuity network is represented by three more sets of fractures with respect to those reported in the literature;(ii)the discontinuity sizes follow a power-law distribution,indicating similarity across scales,and(iii)discontinuity intensity is not uniformly distributed along the outcrop.Our results help to explain the seismic behaviour of the BP detected by the SEIZE survey,suggesting that the low P-wave velocities observed can be related to the discontinuity network,and provide the basic topological parameters(orientation,density,distribution,and aperture)of the fracture network unique to the BP.These,in turn,can be used for interpretation of the Hi-SEIZE seismic survey and forward modelling of the seismic response.
基金supported by the National Natural Science Foundation of China,NSFC(No.42202318).
文摘Understanding the strength characteristics and deformation behaviour of the tunnel surrounding rock in a fault zone is significant for tunnel stability evaluation.In this study,a series of unconfined compression tests were conducted to investigate the mechanical characteristics and failure behaviour of completely weathered granite(CWG)from a fault zone,considering with height-diameter(h/d)ratio,dry densities(ρd)and moisture contents(ω).Based on the experimental results,a regression mathematical model of unconfined compressive strength(UCS)for CWG was developed using the Multiple Nonlinear Regression method(MNLR).The research results indicated that the UCS of the specimen with a h/d ratio of 0.6 decreased with the increase ofω.When the h/d ratio increased to 1.0,the UCS increasedωwith up to 10.5%and then decreased.Increasingρd is conducive to the improvement of the UCS at anyω.The deformation and rupture process as well as final failure modes of the specimen are controlled by h/d ratio,ρd andω,and the h/d ratio is the dominant factor affecting the final failure mode,followed byωandρd.The specimens with different h/d ratio exhibited completely different fracture mode,i.e.,typical splitting failure(h/d=0.6)and shear failure(h/d=1.0).By comparing the experimental results,this regression model for predicting UCS is accurate and reliable,and the h/d ratio is the dominant factor affecting the UCS of CWG,followed byρd and thenω.These findings provide important references for maintenance of the tunnel crossing other fault fractured zones,especially at low confining pressure or unconfined condition.
基金funded by the Scientific research startup Foundation of Fujian University of Technology(GY-Z21067 and GY-Z21026).
文摘Amid urbanization and the continuous expansion of transportation networks,the necessity for tunnel construction and maintenance has become paramount.Addressing this need requires the investigation of efficient,economical,and robust tunnel reinforcement techniques.This paper explores fiber reinforced polymer(FRP)and steel fiber reinforced concrete(SFRC)technologies,which have emerged as viable solutions for enhancing tunnel structures.FRP is celebrated for its lightweight and high-strength attributes,effectively augmenting load-bearing capacity and seismic resistance,while SFRC’s notable crack resistance and longevity potentially enhance the performance of tunnel segments.Nonetheless,current research predominantly focuses on experimental analysis,lacking comprehensive theoretical models.To bridge this gap,the cohesive zone model(CZM),which utilizes cohesive elements to characterize the potential fracture surfaces of concrete/SFRC,the rebar-concrete interface,and the FRP-concrete interface,was employed.A modeling approach was subsequently proposed to construct a tunnel segment model reinforced with either SFRC or FRP.Moreover,the corresponding mixed-mode constitutive models,considering interfacial friction,were integrated into the proposed model.Experimental validation and numerical simulations corroborated the accuracy of the proposed model.Additionally,this study examined the reinforcement design of tunnel segments.Through a numerical evaluation,the effectiveness of innovative reinforcement schemes,such as substituting concrete with SFRC and externally bonding FRP sheets,was assessed utilizing a case study from the Fuzhou Metro Shield Tunnel Construction Project.
基金funded by Royalty and Price of the Mining Right of the Ministry of Finance and the Ministry of Land and Resources in 2012 ([2012]145)
文摘Factures caused by deformation and destruction of bedrocks over coal seams can easily lead to water flooding(inrush)in mines,a threat to safety production.Fractures with high hydraulic conductivity are good watercourses as well as passages for inrush in mines and tunnels.An accurate height prediction of water flowing fractured zones is a key issue in today's mine water prevention and control.The theory of leveraging BP artificial neural network in height prediction of water flowing fractured zones is analysed and applied in Qianjiaying Mine as an example in this paper.Per the comparison with traditional calculation results,the BP artificial neural network better reflects the geological conditions of the research mine areas and produces more objective,accurate and reasonable results,which can be applied to predict the height of water flowing fractured zones.
文摘Taking 91105 working face as the research object, the observation method of water flowing fracture<span style="font-family:Verdana;">d</span><span style="font-family:Verdana;"> zone and the layout of mining holes were determined by analyzing the field geological structure</span><span style="font-family:Verdana;">. </span><span style="font-family:Verdana;">It was shown that the fractured zone height and the ratio given by the measured method were 52.33 and 12.46, respectively. By the numerical simulation method with the software of UDEC, the fractured zone height and the ratio were 42.5 and 10.12. By comparison of measured height data and UDEC numerical simulation, there were some differences between the measured height and the calculated results of UDEC numerical simulation method. The method of simulation can be used as the technical basis for the design of waterproof coal pillar in the future.</span>
基金The National Natural Science Foundation of China(No. 51008071)the Natural Science Foundation fo Jiangsu Province(No. BK2010413)Teaching & Research Excellence Grant for Young Faculty Members at Southeast University,the US National Science Foundation (No. CMS-0223971,CMS-0329416)
文摘In order to avoid brittle fracture failure, a ductile engineered cementitious composite (ECC) was attempted in steel/concrete connection zones to replace normal concrete. The influence of the ECC material ductility on connection failure modes and structural performance was investigated via the pushout test of stud/ECC connection, the pullout test of two-dimensional anchor bolt/ECC connection and the finite element modeling (FEM). The experimental results suggest that the micromechanically designed ECC with a tensile ductility 300 times that of normal concrete switches the brittle fracture failure mode to a ductile one in steel connection zones. This modification in material behavior leads to higher load carrying capacity and structural ductility, which is also confirmed in FEM investigation. The enhancement in structural response through material ductility engineering is expected to be applicable to a wide range of engineering structures where steel and concrete come into contact.
文摘Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.
基金the Natural Sciences and Engineering Research Council of Canadathe Ministry of National Defensethe RMC Green Team for providing the funding and the resources
文摘Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method (FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory (URL) Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks (DFNs) of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation.