In this paper we shall give the characteristic difference methods for two phase displace meat problem in naturally fractured reservoirs.We shall prove the existence,uniqueness of the ap proximate solution and a priori...In this paper we shall give the characteristic difference methods for two phase displace meat problem in naturally fractured reservoirs.We shall prove the existence,uniqueness of the ap proximate solution and a priori discrete L2-error estimates.展开更多
For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation r...For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.展开更多
Water invasion is a common phenomenon in gas reservoirs with active edge-and-bottom aquifers.Due to high reservoir heterogeneity and production parameters,carbonate gas reservoirs feature exploitation obstacles and lo...Water invasion is a common phenomenon in gas reservoirs with active edge-and-bottom aquifers.Due to high reservoir heterogeneity and production parameters,carbonate gas reservoirs feature exploitation obstacles and low recovery factors.In this study,combined core displacement and nuclear magnetic resonance(NMR)experiments explored the reservoir gas−water two-phase flow and remaining microscopic gas distribution during water invasion and gas injection.Consequently,for fracture core,the water-phase relative permeability is higher and the co-seepage interval is narrower than that of three pore cores during water invasion,whereas the water-drive recovery efficiency at different invasion rates is the lowest among all cores.Gas injection is beneficial for reducing water saturation and partially restoring the gas-phase relative permeability,especially for fracture core.The remaining gas distribution and the content are related to the core properties.Compared with pore cores,the water invasion rate strongly influences the residual gas distribution in fracture core.The results enhance the understanding of the water invasion mechanism,gas injection to resume production and the remaining gas distribution,so as to improve the recovery factors of carbonate gas reservoirs.展开更多
From the macroscopic point of view, expressions involving reservoir and operational parameters are established for investigating the stability of moving interface in piston- and non-piston-like displacements. In the c...From the macroscopic point of view, expressions involving reservoir and operational parameters are established for investigating the stability of moving interface in piston- and non-piston-like displacements. In the case of axisymmetrical piston-like displacement, the stability is related to the moving interface position and water to oil mobility ratio. The capillary effect on the stability of moving interface depends on whether or not the moving interface is already stable and correlates with the wettability of the reservoir rock. In the case of non-piston-like displacement, the stability of the front is governed by both the relative permeability and the mobility ratio.展开更多
For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as pi...For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L^2 norm are derived to determine the error in the approximate solution.展开更多
NUMERICAL simulation of the two-phase (oil and water) displacement problem is the mathematical basis of energy sources. For two-dimensional positive problem, Douglas et al. put forward the well-known characteristic fi...NUMERICAL simulation of the two-phase (oil and water) displacement problem is the mathematical basis of energy sources. For two-dimensional positive problem, Douglas et al. put forward the well-known characteristic finite difference method and characteristic finite element method. However, for numerical analysis there exist some difficulties. They assumed that the problem is periodic and the diffusion matrix of the concentration equation is positive difinite展开更多
For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof differen...For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof difference operators,decomposition of high order difference operators,the theory of prior estimates and tech-niques are used.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.Thismethod has already been applied to the numerical simulation of seawater intrusion and migration-accumulationof oil resources.展开更多
X oilfield is a typical multi-layer sandstone reservoir in offshore China. In the early stage, in order to obtain economic oil production, directional well was used to adopt a set of multi-layer combined production, w...X oilfield is a typical multi-layer sandstone reservoir in offshore China. In the early stage, in order to obtain economic oil production, directional well was used to adopt a set of multi-layer combined production, which resulted in serious interlayer interference, water injection inrush and low reserve utilization. Based on the theory of single-phase unstable seepage flow and the theory of oil-water two-phase non-piston displacement, the author innovatively established a mathematical model of interlayer dynamic interference in multilayer sandstone reservoirs, revealed the influence law of main controlling factors such as permeability, viscosity, starting pressure gradient and reservoir type on interlayer interference, and innovatively formed a quantitative characterization theory of interlayer interference in multilayer combined oil production. The technical demarcation of offshore multi-zone combined oil production reservoir system is formulated and the recombination of oil field development system is guided.展开更多
The dissolved oxygen concentration in a flow changes with distance downstream of the spillway crest and depends on the geometric configuration of the spillway and the hydraulic and operating conditions.A mathematical ...The dissolved oxygen concentration in a flow changes with distance downstream of the spillway crest and depends on the geometric configuration of the spillway and the hydraulic and operating conditions.A mathematical model was developed to simulate the turbulent structure of the flow over the spillway of the Three Gorges Dam at the 145 m reservoir water level to study the aeration characteristics and the gas transport.The model was calibrated and verified with measured data.The analysis of distribution of the aeration and the dissolved oxygen showed that the downstream water level,upstream dissolved oxygen content,and the flow discharge all affect the dissolved oxygen saturation downstream of the sluicing dam.The simulation provides guidance for controlling the dissolved oxygen supersaturation and environmentally friendly operation of the Three Gorges Dam.展开更多
基金Supported by National Natural Science Foundation of ChinaChina Key Project for Basic Researches
文摘In this paper we shall give the characteristic difference methods for two phase displace meat problem in naturally fractured reservoirs.We shall prove the existence,uniqueness of the ap proximate solution and a priori discrete L2-error estimates.
基金the Major State Basic Research Program of China(19990328)NNSF of China(19871051,19972039) the Doctorate Foundation of the State Education Commission
文摘For compressible two-phase displacement problem, a kind of upwind operator splitting finite difference schemes is put forward and make use of operator splitting, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L 2 norm are derived to determine the error, in the approximate solution.
基金Project(2016ZX05017)supported by the China National Science and Technology Major Project
文摘Water invasion is a common phenomenon in gas reservoirs with active edge-and-bottom aquifers.Due to high reservoir heterogeneity and production parameters,carbonate gas reservoirs feature exploitation obstacles and low recovery factors.In this study,combined core displacement and nuclear magnetic resonance(NMR)experiments explored the reservoir gas−water two-phase flow and remaining microscopic gas distribution during water invasion and gas injection.Consequently,for fracture core,the water-phase relative permeability is higher and the co-seepage interval is narrower than that of three pore cores during water invasion,whereas the water-drive recovery efficiency at different invasion rates is the lowest among all cores.Gas injection is beneficial for reducing water saturation and partially restoring the gas-phase relative permeability,especially for fracture core.The remaining gas distribution and the content are related to the core properties.Compared with pore cores,the water invasion rate strongly influences the residual gas distribution in fracture core.The results enhance the understanding of the water invasion mechanism,gas injection to resume production and the remaining gas distribution,so as to improve the recovery factors of carbonate gas reservoirs.
基金the National Basic Research Program of China (2005CB221300)the Innovative Project of Chinese Academy of Sciences (KJCX-SW-L08)
文摘From the macroscopic point of view, expressions involving reservoir and operational parameters are established for investigating the stability of moving interface in piston- and non-piston-like displacements. In the case of axisymmetrical piston-like displacement, the stability is related to the moving interface position and water to oil mobility ratio. The capillary effect on the stability of moving interface depends on whether or not the moving interface is already stable and correlates with the wettability of the reservoir rock. In the case of non-piston-like displacement, the stability of the front is governed by both the relative permeability and the mobility ratio.
基金Project supported by the National Scaling Programthe National Tackling Key Problems Programthe Doctorate Foundation of the State Education Commission of China
文摘For compressible two-phase displacement problem, a kind of characteristic finite difference fractional steps schemes is put forward and thick and thin grids are used to form a complete set. Some techniques, such as piecewise biquadratic interpolation, of calculus of variations, multiplicative commutation rule of difference operators, decomposition of high order difference operators and prior estimates are adopted. Optimal order estimates in L^2 norm are derived to determine the error in the approximate solution.
文摘NUMERICAL simulation of the two-phase (oil and water) displacement problem is the mathematical basis of energy sources. For two-dimensional positive problem, Douglas et al. put forward the well-known characteristic finite difference method and characteristic finite element method. However, for numerical analysis there exist some difficulties. They assumed that the problem is periodic and the diffusion matrix of the concentration equation is positive difinite
基金Supported by the Major State Basic Research Program of China (Grant No.1999032803)the National Natural Science Foundation of China (Grant No.10372052,10271066)the Decorate Foundation of the Ministry Education of China (Grant No.20030422047)
文摘For compressible two-phase displacement problem,the modified upwind finite difference fractionalsteps schemes are put forward.Some techniques,such as calculus of variations,commutative law of multiplicationof difference operators,decomposition of high order difference operators,the theory of prior estimates and tech-niques are used.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.Thismethod has already been applied to the numerical simulation of seawater intrusion and migration-accumulationof oil resources.
文摘X oilfield is a typical multi-layer sandstone reservoir in offshore China. In the early stage, in order to obtain economic oil production, directional well was used to adopt a set of multi-layer combined production, which resulted in serious interlayer interference, water injection inrush and low reserve utilization. Based on the theory of single-phase unstable seepage flow and the theory of oil-water two-phase non-piston displacement, the author innovatively established a mathematical model of interlayer dynamic interference in multilayer sandstone reservoirs, revealed the influence law of main controlling factors such as permeability, viscosity, starting pressure gradient and reservoir type on interlayer interference, and innovatively formed a quantitative characterization theory of interlayer interference in multilayer combined oil production. The technical demarcation of offshore multi-zone combined oil production reservoir system is formulated and the recombination of oil field development system is guided.
基金Supported by the National Key Basic Research and DevelopmentProgram (973) of China (No 2006CB403304)State Key Labo-ratory of Hydroscience and Engineering Program of China (Nos2008-TC-1 and 2009-TC-2)
文摘The dissolved oxygen concentration in a flow changes with distance downstream of the spillway crest and depends on the geometric configuration of the spillway and the hydraulic and operating conditions.A mathematical model was developed to simulate the turbulent structure of the flow over the spillway of the Three Gorges Dam at the 145 m reservoir water level to study the aeration characteristics and the gas transport.The model was calibrated and verified with measured data.The analysis of distribution of the aeration and the dissolved oxygen showed that the downstream water level,upstream dissolved oxygen content,and the flow discharge all affect the dissolved oxygen saturation downstream of the sluicing dam.The simulation provides guidance for controlling the dissolved oxygen supersaturation and environmentally friendly operation of the Three Gorges Dam.