To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions...To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.展开更多
[Objective] In order to study plant adaptation mechanism under different landforms in drought regions.[Method] Observe soil moisture dynamic of Salix psammophila sample areas on the dune and depression with neutron mo...[Objective] In order to study plant adaptation mechanism under different landforms in drought regions.[Method] Observe soil moisture dynamic of Salix psammophila sample areas on the dune and depression with neutron moisture gauge and research the roots distribution of Salix psammophila sample areas on the dune and depression respectively by digging method.[Result] The quantity of Salix psammophila roots on the dune exponentially decreases while that on the depression decreases by power function in horizontal direction.In vertical direction,Salix psammophila roots on the dune are mainly distributed in 0-30 and 80-120 cm layers as 72% of all,while Salix psammophila roots on the depression are mainly distributed in 0-40 cm layers as 54% of all.[Conclusion] Salix psammophila roots on the dune not only use surface soil water but also use middle-layer groundwater.Salix psammophila roots on the depression primarily use surface soil water.展开更多
基金supported by the Natural Science Foundation of Hainan Province(Grant No.520LH015)the Fundamental Research Funds for the Central Universities and the Major Projects of Strategic Emerging Industries in Shanghai(Grant No.BH3230001).
文摘To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.
基金Supported by Science and Technology Research Major Project ofthe Ministry of Education (308021)Publicly-Traded Research Pro-ject of the Ministry of Land and Resources (200911004)~~
文摘[Objective] In order to study plant adaptation mechanism under different landforms in drought regions.[Method] Observe soil moisture dynamic of Salix psammophila sample areas on the dune and depression with neutron moisture gauge and research the roots distribution of Salix psammophila sample areas on the dune and depression respectively by digging method.[Result] The quantity of Salix psammophila roots on the dune exponentially decreases while that on the depression decreases by power function in horizontal direction.In vertical direction,Salix psammophila roots on the dune are mainly distributed in 0-30 and 80-120 cm layers as 72% of all,while Salix psammophila roots on the depression are mainly distributed in 0-40 cm layers as 54% of all.[Conclusion] Salix psammophila roots on the dune not only use surface soil water but also use middle-layer groundwater.Salix psammophila roots on the depression primarily use surface soil water.