The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological securit...The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.展开更多
In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hy...In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.展开更多
[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exp...[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exposed to water under the dark conditions respectively in Septem- ber 2009 and September 2010. Then, they were taken away from the water, and grew in natural conditions in the following March and April respec- tively ( marked as S1, S2, S1 and S2). The plant number was conducted statistics respectively. On May 7, the leaf number was made statistics. Length, width and rapid light responding curve of the leaf were determined. [ Result] Repeated flooding restrained significantly plant germination un- der the dark condition. Plant number in S1 and S2 groups decreased by 38.9% and 33.3% respectively compared with the control. It also reduced survival rate of the plant. Plant number in S2 group decreased by 16.7% (P 〈 0.05) compared with that of S2 group when they were taken away from the water. Both of flooding promoted elongation of the leaves, restrained leaves to grow wider, and also restrained leaf formation of the plants except for S1 and S1 groups. Total leaf length of a plant decreased markedly after the second flooding which in S1 and S2 groups were 50.6% and 36.9% respectively less than that after the first flooding. Total leaf number of the plant in S1and S2 groups reduced significantly, and they were only 63.1% and 38.5% respectively of the control. Compared with the first flooding, total leaf length of a plant in the control increased signifi- cantly and decreased remarkably in S2 group after the second flooding. Furthermore, light response ability of the relative electronic transfer rate (rETR) in S1 group wasn't significantly different from the control, and rETRmax, in S2 group was significantly less than the control. Moreover, non- photochemical quenching (NPQ) decreased remarkably in S1 and S2 groups. It indicated that A. calamus had good restore ability of the light re- sponse, but restoring of its heat dissipation capacity was slower. [ Conclusion] Repeated flooding inhibited plant growth and population recovery of A. calamus under the dark condition.展开更多
The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landsc...The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landscape. Siltation, eutrophication, enrichment of heavy metals, and methane emissions in the WLFZ have been widely associated with sediment and soil particles generated from the upstream catchment or upland slopes. However, little attention has been paid to the complexity of sediment particle-size distributions in the WLFZ. In the present study, core samples(from a 345 cm thick sediment core from the base of the WLFZ), slope transect surface samples(across/up a WLFZ slope), and along-river/longitudinal surface samples(from the reservoir reaches) were collected. Laser granulometry and a volume-based fractal model were used to reveal the characteristics of sediment particle-size distributions. Results indicate that the alternation of coarse and fine particles in the sedimentary core profile is represented as a fluctuation of low and high values of fractal dimension(D), ranging from 2.59 to 2.77. On the WLFZ slope transect, surface sediment particles coarsen with increasing elevation, sand content increases from 3.3% to 78.5%, and D decreases from 2.76 to 2.53. Longitudinally, surface sediments demonstrate a downstream-fining trend, and D increases gradually downstream. D is significantly positively correlated with the fine particle content. We conclude that D is a useful measure for evaluating sediment particle-size distribution.展开更多
This field study investigated the nitrogen concentrations in the shallow groundwater from an ephemeral stream and four land uses: cropland, two-year restored (2yr) and five-years restored (Syr) woodlands, fishpon...This field study investigated the nitrogen concentrations in the shallow groundwater from an ephemeral stream and four land uses: cropland, two-year restored (2yr) and five-years restored (Syr) woodlands, fishponds, and the nitrogen flux in the riparian zone of Yuqiao Reservoir. The groundwater nitrate-N concentrations in cropland were the highest among the four land uses. Total dissolved nitrogen (TDN) and nitrate-N concentrations in the 2yr woodland were significantly (p 〈 0.05) higher than in 5yr woodland. The lowest nitrogen concentrations were detected in fishponds. Nitrate-N was the main form in cropland and 2yr woodland, whereas both nitrate-N and dissolved organic nitrogen (DON) were the main species in 5yr woodland and fishponds. But, ammonium-N was the main form in the ephemeral stream. During the rainy season, the groundwater flow with dissolved nitrogen drains from upland into the reservoir along the hydraulic gradient. The woodland between the cropland and reservoir could act as a buffer to retain shallow groundwater nitrogen. The dominant form of ammonium-N in the groundwater TDN pool in ephemeral stream indicated that nitrogen from the village and orchard in upland flowed into the reservoir via subsurface flow. The fishpond was not an important pollution source for nitrogen transfer via shallow groundwater.展开更多
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
After the completion of the Three Gorges dam, a 30 m high water-level-fluctuating zone (WLFZ) will appear along the banks, and will form a seasonal wetland ecosystem. According to the program of storing water in the...After the completion of the Three Gorges dam, a 30 m high water-level-fluctuating zone (WLFZ) will appear along the banks, and will form a seasonal wetland ecosystem. According to the program of storing water in the Three Gorges reservoir, the main ecological and environmental problems probably incurred in WLFZ are discussed, such as formation of contaminated belt along banks, appearance of epidemic diseases in the reservoir region (including urban districts), aggravation of geologic disasters, degradation of biodiversity and exacerbation of the ecosystem vulnerability. Six items of strategies are put forward according to the causes, distributed features and trends of these problems in this paper.展开更多
Revegetation is one of the successful approaches to soil consolidation and streambank protection in reservoir water level fluctuation zones(WLFZs).However,little research has been conducted to explore the impact of he...Revegetation is one of the successful approaches to soil consolidation and streambank protection in reservoir water level fluctuation zones(WLFZs).However,little research has been conducted to explore the impact of herbaceous species roots on soil anti-scourability during different growth stages and under different degrees of inundation in this zone.This study sampled two typical grasslands(Hemarthria compressa grassland and Xanthium sibiricum grassland)at two elevations(172 and 165 m a.s.l.)in the water level fluctuation zone(WLFZ)in the Three Gorges Reservoir(TGR)of China to quantify the changes in soil and root properties and their effects on soil anti-scourability.A simulated scouring experiment was conducted to test the soil anti-scourability in April and August of 2018.The results showed that the discrepancy in inundation duration and predominant herbaceous species was associated with a difference in root biomass between the two grasslands.The root weight density(RWD)values in the topsoil(0-10 cm)ranged from 7.31 to 13 mg cm^(-3) for the Hemarthria compressa grassland,while smaller values ranging from 0.48 to 8.61 mg cm^(-3) were observed for the Xanthium sibiricum grassland.In addition,the root biomass of the two herbs was significantly greater at 172 m a.s.l.than that at 165 m a.s.l.in the early recovery growth period(April).Both herbs can effectively improve the soil properties;the organic matter contents of the grasslands were 128.06%to 191.99%higher than that in the bare land(CK),while the increase in the water-stable aggregate ranged from 8.21%to 18.56%.Similarly,the topsoil antiscourability indices in both the herbaceous grasslands were larger than those in the CK.The correlation coefficients between the root length density(RLD),root surface area density(RSAD)and root volume density(RVD)of fine roots and the soil antiscourability index were 0.501,0.776 and 0.936,respectively.Moreover,the change in the soil antiscourability index was more sensitive to alternations in the RLD with diameters less than 0.5 mm.Overall,the present study showed that the perennial herbaceous(H.compressa)has great potential as a countermeasure to reduce or mitigate the impact of erosion in the WLFZ of the Three Gorges Reservoir.展开更多
Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank...Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.展开更多
Water level fluctuation zone(hereinafter referred to as "WLFZ") is a transitional ecosystem between terrestrial ecosystem and aquatic ecosystem,and also a key area to control its neighboring terrestrial and ...Water level fluctuation zone(hereinafter referred to as "WLFZ") is a transitional ecosystem between terrestrial ecosystem and aquatic ecosystem,and also a key area to control its neighboring terrestrial and aquatic ecosystem. After the Three Gorges Reservoir was put into use,ecological environment of its WLFZ has aroused wide concern from domestic and foreign experts. On the basis of introducing characteristics of WLFZ of the Three Gorges Reservoir,current ecological environment and main problems of this area were analyzed,plant selection and configuration was elaborated as well as the implementation effect of many WLFZ protection and ecological restoration modes. In view of the actual conditions,pertinent suggestions were proposed for WLFZ of the Three Gorges Reservoir,namely classified protection and ecological restoration,enhancing monitoring and assessment of current situation and change tendency,carrying out technical researches and demonstration of WLFZ wetland ecological restoration.展开更多
Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failu...Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs.展开更多
The KT-II layer in the Zananor Oilfield,Caspian Basin,Kazakhstan,contains carbonate reservoirs of various types.The complex pore structure of the reservoirs have made it difficult to identify watered-out zones with tr...The KT-II layer in the Zananor Oilfield,Caspian Basin,Kazakhstan,contains carbonate reservoirs of various types.The complex pore structure of the reservoirs have made it difficult to identify watered-out zones with traditional logging interpretation methods.This study classifies the reservoirs on the basis of core analysis and establishes an identification model for watered-out layers in the field to effectively improve the interpretation accuracy.Thin section analysis shows that there are three types of pores in the reservoirs,i.e.,the matrix pore,fracture and dissolution vug.A triple porosity model is used to calculate the porosities of the reservoirs and the results are combined with core analysis to classify the reservoirs into the fractured,matrix pore,fracture-pore as well as composite types.A classification standard is also proposed.There are differences in resistivity logging responses from the reservoirs of different types before and after watering-out.The preewatering-out resistivities are reconstructed using generalized neural network for different types of reservoirs.The watered-out layers can be effectively identified according to the difference in resistivity curves before and after watering-out.The results show that the watered-out layers identified with the method are consistent with measured data,thus serving as a reference for the evaluation of watered-out layers in the study area.展开更多
Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of suc...Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.展开更多
The reservoir pore structure controls the reservoir quality and resistivity response of hydrocarbon-bearing zones and thus, critically affects logging interpretation. We use petrophysical data in three types of reserv...The reservoir pore structure controls the reservoir quality and resistivity response of hydrocarbon-bearing zones and thus, critically affects logging interpretation. We use petrophysical data in three types of reservoir with different pore structure characteristics to show that the complexity of pore structure had a significant effect on the effective porosity and permeability regardless of geological factors responsible for the formation of pore structure. Moreover,, the distribution and content of conductive fluids in the reservoir varies dramatically owing to pore structure differences, which also induces resistivity variations in reservoir rocks. Hence, the origin of low-resistivity hydrocarbon-bearing zones, except for those with conductive matrix and mud filtrate invasion, is attributed to the complexity of the pore structures. Consequently, reservoir-specific evaluation models, parameters, and criteria should be chosen for resistivity log interpretation to make a reliable evaluation of reservoir quality and fluids.展开更多
Superimposed basins in West China have experienced multi-stage tectonic events and multicycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Mos...Superimposed basins in West China have experienced multi-stage tectonic events and multicycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Most of the complex hydrocarbon reservoirs are characterized by relocation, scale re-construction, component variation and phase state transformation, and their distributions are very difficult to predict. Research shows that regional caprock (C), high-quality sedimentary facies (Deposits, D), paleohighs (Mountain, M) and source rock (S) are four geologic elements contributing to complex hydrocarbon reservoir formation and distribution of western superimposed basins. Longitudinal sequential combinations of the four elements control the strata of hydrocarbon reservoir formation, and planar superimpositions and combinations control the range of hydrocarbon reservoir and their simultaneous joint effects in geohistory determine the time of hydrocarbon reservoir formation. Multiple-element matching reservoir formation presents a basic mode of reservoir formation in superimposed basins, and we recommend it is expressed as T-CDMS. Based on the multiple-element matching reservoir formation mode, a comprehensive reservoir formation index (Tcdms) is developed in this paper to characterize reservoir formation conditions, and a method is presented to predict reservoir formation range and probability of occurrence in superimposed basins. Through application of new theory, methods and technology, the favorable reservoir formation range and probability of occurrence in the Ordovician target zone in Tarim Basin in four different reservoir formation periods are predicted. Results show that central Tarim, Yinmaili and Lunnan are the three most favorable regions where Ordovician oil and gas fields may have formed. The coincidence of prediction results with currently discovered hydrocarbon reservoirs reaches 97 %. This reflects the effectiveness and reliability of the new theory, methods and technology.展开更多
Surface soil/sediment samples were collected from the Water-Level Fluctuation Zone(WLFZ), cultivated land and forest land at 50 different grid points from Shenjia watershed, the Three Gorges Reservoir area in August 2...Surface soil/sediment samples were collected from the Water-Level Fluctuation Zone(WLFZ), cultivated land and forest land at 50 different grid points from Shenjia watershed, the Three Gorges Reservoir area in August 2013. The spatial distribution, sources and ecological risk assessment for Arsenic(As), Cadmium(Cd),Chromium(Cr), Copper(Cu), Nickel(Ni), Lead(Pb)and Zinc(Zn) were analyzed in this study. The results showed all tested metals had similar distribution patterns except Ni and Cr, with areas of high concentrations distributed in the southwest(WLFZ and watershed outlet) of the study area. Ni and Cr,which were highly positively correlated and present in high concentrations, were primarily distributed in the south and middle zones of the study area. Lower concentration areas of all metals were uniformly distributed west of the high-elevation zones and forest land. Factor analysis(FA) and factor analysismultiple linear regression(FA-MLR) showed that the major sources of Cd were fertilizer and traffic sources,which together accounted for 87% of Cd. As, Zn and Cu levels were primarily supplied by industrial and domestic sources, accounting for 76% of As, 75% of Cu and 67% of Zn. Surface soils/sediments of the study watershed contaminated by Cd represent a high ecological risk, whereas other metals represent low ecological risks. The potential ecological risk index(PERI) analysis indicated that it had a low(widerange) ecological risk and a moderate(small-range)ecological risk primarily distributed in the outlet of the study watershed. Fertilizers and traffic are the primary sources of Cd pollution, which should be more closely controlled for the purposes of water quality and ecological conservation.展开更多
Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Qua...Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Quantitative Grain Fluorescence (QGF) experiments, well-tie seismic correlation, and paleo structure analysis, the scale and distribution of paleo hydrocarbon pools in the study area are outlined. Combining current structural features and fault characteristics, the re-migration pathways of paleo oil and gas are depicted. Based on barrier conditions on the oil re-migration pathways and current reservoir distribution, we recognize three types of secondary reservoirs. By analyzing structural evolution and sand body-fault distribution, the major control factors of secondary reservoirs are specified and, consequently, favorable zones for secondary reservoirs are predicted. The results are mainly as follows. (1) In the primary accumulation period in the Cretaceous, paleo hydrocarbon pools were formed in the Sangonghe Formation of the Mosuowan uplift and their size and distribution were extensive and the exploration potential for secondary reservoirs should not be ignored. Besides, paleo reservoirs were also formed in the Mobei uplift, but just small scale. (2) In the adjustment period in the Neogene, traps were reshaped or destroyed and so were the paleo reservoirs, resulting in oil release. The released oil migrated linearly northward along the structural highs of the Mobei uplift and the Qianshao low-relief uplift and then formed secondary reservoirs when it met new traps. In this process, a structural ridge cooperated with sand bodies and faults, applying unobstructed pathways for oil and gas re-migration. (3) The secondary hydrocarbon pools are classified into three types: low-relief anticlinal type, lithologic pinch-out type and fault block type. The distribution of the first type is controlled by a residual low uplift in the north flank of the paleo-anticline. The second type is distributed in the lithologic pinch-out zones on the periphery of the inherited paleo uplift. The third type is controlled by fault zones of which the strikes are perpendicular to the hydrocarbon re-migration pathways. (4) Four favorable zones for secondary reservoirs are predicted: the low-relief structural zone of the north flank of the Mosuowan paleo-anticline, the fault barrier zone on the western flank of the Mobei uplift, the Qianshao low-relief uplift and the north area of the Mobei uplift that parallels the fault zone. The study above effectively supports the exploration of the Qianshao low-relief uplift, with commercial oil discovered in the Qianshaol well. Besides, the research process in this paper can also be applied to other basins to explore for secondary reservoirs.展开更多
A perforating hole is a channel through which the oil and gas in a reservoir pass into the production well bore.During the process of perforating due to explosion,the surrounding sandstone will be damaged to a certain...A perforating hole is a channel through which the oil and gas in a reservoir pass into the production well bore.During the process of perforating due to explosion,the surrounding sandstone will be damaged to a certain extent,which will increase the well bore skin and lead to the decrease of production consequently.In this work a mechanical model of perforating damage is developed to describe the influences of perforating due to explosion on the porosity and permeability of the surrounding sandstone near the compaction zone.Based on this developed model,the important data related to the damage of sandstone,such as matrix effective stress,plastic deformation,volumetric strain,and so on,can be numerically simulated.Especially the behaviors of plasticity kinematic hardening at high strain rate due to impact loads,which are the important characteristics in the sandstone,is taken into account in this developed model.Both numerical and testing results show that the damage due to perforation in the sandstone can be accurately predicted by the developed model together with the porosity and permeability evolving model of perforation in a compaction zone.As a practical application,a methodology for the analysis of damage of porosity and permeability around a perforation tunnel is supposed based on the developed model and the core flow efficiency test of interparticle pore spaced sandstone target in China Shengli Oilfield and the computed tomography test.展开更多
Objective To define and evaluate the malaria transmission potential in the Yangtze River, following construction of the Three Gorges Reservoir. Methods Six villages, namely, Kaixian, Fengjie, Wanzhou, Fuling, Yubei, a...Objective To define and evaluate the malaria transmission potential in the Yangtze River, following construction of the Three Gorges Reservoir. Methods Six villages, namely, Kaixian, Fengjie, Wanzhou, Fuling, Yubei, and Zigui were selected for investigating the malaria transmission potential in the reservoir. Transmission potential was estimated by mathematical modeling and evaluation of the local malaria situation. Factors that influenced the transmission potential were analyzed using Poisson regression analysis in combination with Grey Systematic Theory (based on evaluation by the Delphi method). Results Indirect fluorescent antibody data and the incidence of malaria in the local population were consistent with the malaria transmission potential calculated for the area. Multivariate Poisson regression analysis showed a statistically significant association between the riparian zone and the man‐biting rate. Conclusion The risk of a malaria epidemic can be forecasted using the malaria transmission potential parameters investigated here which was closely correlated with the riparian zone.展开更多
Ruxi River is a tributary of the Three Gorges Reservoir. This study examined the temporal and spatial dynamics in particle size characteristics and the associated nutrients and contaminants of the fluvial suspended an...Ruxi River is a tributary of the Three Gorges Reservoir. This study examined the temporal and spatial dynamics in particle size characteristics and the associated nutrients and contaminants of the fluvial suspended and deposited sediments along the Ruxi River. Temporal variations in the particle size distribution of the suspended sediment are controlled mainly by differences in sediment source during different seasons. Total organic carbon (TOC), total nitrogen (TN) and total phosphorous (TP) in the 〈 62 μm fraction of the suspended sediment exhibit considerably higher concentrations in spring, indicating high probability of algal blooms in the backwater areas. Downstream trends in the nutrient contents of 〈 62 pm deposited sediments imply the greatest potential for eutrophication in the backwater ends, where highest nutrient concentrations were detected. Assessment of metal contamination shows that the sediments deposited in the water-level fluctuation zone were moderately to strongly contaminated by Cadmium (Cd), with a considerably high potential ecological risk. The findings reported have emphasized the impacts of reservoir impoundment on aquatic and/or terrestrial environment in this region. More information on physical, chemical and biological processes of sediment and sediment-associated materials are needed for developing ecologically sound policies management. environmentally and of water and sediment展开更多
基金funded by National Natural Science Foundation Project (40801077)Ministry of Education Key Project (209100)+1 种基金Natural Science Foundation of Chongqing ( CSTC, 2008BB7367 )Chongqing Municipal Education Commission of Science and Technology Research Grant Project (KJ070811)~~
文摘The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.
文摘In this study,a fully coupled hydromechanical model within the extended finite element method(XFEM)-based cohesive zone method(CZM)is employed to investigate the simultaneous height growth behavior of multi-cluster hydraulic fractures in layered porous reservoirs with modulus contrast.The coupled hydromechanical model is first verified against an analytical solution and a laboratory experiment.Then,the fracture geometry(e.g.height,aperture,and area)and fluid pressure evolutions of multiple hydraulic fractures placed in a porous reservoir interbedded with alternating stiff and soft layers are investigated using the model.The stress and pore pressure distributions within the layered reservoir during fluid injection are also presented.The simulation results reveal that stress umbrellas are easily to form among multiple hydraulic fractures’tips when propagating in soft layers,which impedes the simultaneous height growth.It is also observed that the impediment effect of soft layer is much more significant in the fractures suppressed by the preferential growth of adjoining fractures.After that,the combined effect of in situ stress ratio and fracturing spacing on the multi-fracture height growth is presented,and the results elucidate the influence of in situ stress ratio on the height growth behavior depending on the fracture spacing.Finally,it is found that the inclusion of soft layers changes the aperture distribution of outmost and interior hydraulic fractures.The results obtained from this study may provide some insights on the understanding of hydraulic fracture height containment observed in filed.
基金Supported by Natural Science Foundation Project,Chongqing Science and Technology Commission(CSTC) ,China(2009BB7255)Talent Start-up Foundation Project ,Chongqing University of Arts and Science,ChinaScience Research Project,Chongqing University of Arts and Science(XZ031)
文摘[ Objective] The research aimed to study influence of the repeated flooding on growth and development of A. calamus in water-level-fluc- tuation zone of the Three Gorges Reservoir. [ Method] A. calamus plants were exposed to water under the dark conditions respectively in Septem- ber 2009 and September 2010. Then, they were taken away from the water, and grew in natural conditions in the following March and April respec- tively ( marked as S1, S2, S1 and S2). The plant number was conducted statistics respectively. On May 7, the leaf number was made statistics. Length, width and rapid light responding curve of the leaf were determined. [ Result] Repeated flooding restrained significantly plant germination un- der the dark condition. Plant number in S1 and S2 groups decreased by 38.9% and 33.3% respectively compared with the control. It also reduced survival rate of the plant. Plant number in S2 group decreased by 16.7% (P 〈 0.05) compared with that of S2 group when they were taken away from the water. Both of flooding promoted elongation of the leaves, restrained leaves to grow wider, and also restrained leaf formation of the plants except for S1 and S1 groups. Total leaf length of a plant decreased markedly after the second flooding which in S1 and S2 groups were 50.6% and 36.9% respectively less than that after the first flooding. Total leaf number of the plant in S1and S2 groups reduced significantly, and they were only 63.1% and 38.5% respectively of the control. Compared with the first flooding, total leaf length of a plant in the control increased signifi- cantly and decreased remarkably in S2 group after the second flooding. Furthermore, light response ability of the relative electronic transfer rate (rETR) in S1 group wasn't significantly different from the control, and rETRmax, in S2 group was significantly less than the control. Moreover, non- photochemical quenching (NPQ) decreased remarkably in S1 and S2 groups. It indicated that A. calamus had good restore ability of the light re- sponse, but restoring of its heat dissipation capacity was slower. [ Conclusion] Repeated flooding inhibited plant growth and population recovery of A. calamus under the dark condition.
基金funded by the National Natural Science Foundation of China (Grant nos. 41771320, 41771321, and 41571278)the Opening Project of Chongqing Key Laboratory of Earth Surface Processes and Environmental Remote Sensing in the Three Gorges Reservoir Area (Grant no. DBGC201801)the Sichuan Science and Technology Program (Grant no. 2018SZ0132)
文摘The combined effect of periodic water impoundment and seasonal natural flood events has created a 30 m high water-level fluctuation zone(WLFZ) around the Three Gorges Reservoir(TGR), China, forming a unique eco-landscape. Siltation, eutrophication, enrichment of heavy metals, and methane emissions in the WLFZ have been widely associated with sediment and soil particles generated from the upstream catchment or upland slopes. However, little attention has been paid to the complexity of sediment particle-size distributions in the WLFZ. In the present study, core samples(from a 345 cm thick sediment core from the base of the WLFZ), slope transect surface samples(across/up a WLFZ slope), and along-river/longitudinal surface samples(from the reservoir reaches) were collected. Laser granulometry and a volume-based fractal model were used to reveal the characteristics of sediment particle-size distributions. Results indicate that the alternation of coarse and fine particles in the sedimentary core profile is represented as a fluctuation of low and high values of fractal dimension(D), ranging from 2.59 to 2.77. On the WLFZ slope transect, surface sediment particles coarsen with increasing elevation, sand content increases from 3.3% to 78.5%, and D decreases from 2.76 to 2.53. Longitudinally, surface sediments demonstrate a downstream-fining trend, and D increases gradually downstream. D is significantly positively correlated with the fine particle content. We conclude that D is a useful measure for evaluating sediment particle-size distribution.
基金supported by the Key Project of Knowledge Innovation Programme of CAS(No.KZCX1-YW-06-02)the National Basic Research Priorities Program of China(No.2006CB403306)the National Natural Science Foundation of China(No.40601036).
文摘This field study investigated the nitrogen concentrations in the shallow groundwater from an ephemeral stream and four land uses: cropland, two-year restored (2yr) and five-years restored (Syr) woodlands, fishponds, and the nitrogen flux in the riparian zone of Yuqiao Reservoir. The groundwater nitrate-N concentrations in cropland were the highest among the four land uses. Total dissolved nitrogen (TDN) and nitrate-N concentrations in the 2yr woodland were significantly (p 〈 0.05) higher than in 5yr woodland. The lowest nitrogen concentrations were detected in fishponds. Nitrate-N was the main form in cropland and 2yr woodland, whereas both nitrate-N and dissolved organic nitrogen (DON) were the main species in 5yr woodland and fishponds. But, ammonium-N was the main form in the ephemeral stream. During the rainy season, the groundwater flow with dissolved nitrogen drains from upland into the reservoir along the hydraulic gradient. The woodland between the cropland and reservoir could act as a buffer to retain shallow groundwater nitrogen. The dominant form of ammonium-N in the groundwater TDN pool in ephemeral stream indicated that nitrogen from the village and orchard in upland flowed into the reservoir via subsurface flow. The fishpond was not an important pollution source for nitrogen transfer via shallow groundwater.
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.
基金Thanks the financial support from National Natural Science Foundation of China (#40561006), National Natural Science Foundation of China (06XYJ017), and Key Foundation of Chongqing Normal University (08XLZ13).
文摘After the completion of the Three Gorges dam, a 30 m high water-level-fluctuating zone (WLFZ) will appear along the banks, and will form a seasonal wetland ecosystem. According to the program of storing water in the Three Gorges reservoir, the main ecological and environmental problems probably incurred in WLFZ are discussed, such as formation of contaminated belt along banks, appearance of epidemic diseases in the reservoir region (including urban districts), aggravation of geologic disasters, degradation of biodiversity and exacerbation of the ecosystem vulnerability. Six items of strategies are put forward according to the causes, distributed features and trends of these problems in this paper.
基金funded by the Projects of National Natural Science Foundation of China(Grant No.41977075,41771321)Chongqing Talent Program(CQYC201905009)+1 种基金Science Fund for Distinguished Young Scholars of Chongqing(cstc2019jcyjjqX0025)the Sichuan Science and Technology Program(Grant no.2018SZ0132)。
文摘Revegetation is one of the successful approaches to soil consolidation and streambank protection in reservoir water level fluctuation zones(WLFZs).However,little research has been conducted to explore the impact of herbaceous species roots on soil anti-scourability during different growth stages and under different degrees of inundation in this zone.This study sampled two typical grasslands(Hemarthria compressa grassland and Xanthium sibiricum grassland)at two elevations(172 and 165 m a.s.l.)in the water level fluctuation zone(WLFZ)in the Three Gorges Reservoir(TGR)of China to quantify the changes in soil and root properties and their effects on soil anti-scourability.A simulated scouring experiment was conducted to test the soil anti-scourability in April and August of 2018.The results showed that the discrepancy in inundation duration and predominant herbaceous species was associated with a difference in root biomass between the two grasslands.The root weight density(RWD)values in the topsoil(0-10 cm)ranged from 7.31 to 13 mg cm^(-3) for the Hemarthria compressa grassland,while smaller values ranging from 0.48 to 8.61 mg cm^(-3) were observed for the Xanthium sibiricum grassland.In addition,the root biomass of the two herbs was significantly greater at 172 m a.s.l.than that at 165 m a.s.l.in the early recovery growth period(April).Both herbs can effectively improve the soil properties;the organic matter contents of the grasslands were 128.06%to 191.99%higher than that in the bare land(CK),while the increase in the water-stable aggregate ranged from 8.21%to 18.56%.Similarly,the topsoil antiscourability indices in both the herbaceous grasslands were larger than those in the CK.The correlation coefficients between the root length density(RLD),root surface area density(RSAD)and root volume density(RVD)of fine roots and the soil antiscourability index were 0.501,0.776 and 0.936,respectively.Moreover,the change in the soil antiscourability index was more sensitive to alternations in the RLD with diameters less than 0.5 mm.Overall,the present study showed that the perennial herbaceous(H.compressa)has great potential as a countermeasure to reduce or mitigate the impact of erosion in the WLFZ of the Three Gorges Reservoir.
基金Financial support for this study was jointly provided by the National Natural Science Foundation of China (Grant No. 41201272)the Chinese Academy of Sciences Action-plan for West Development (Grant No. KZCX2-XB3-09)the Chinese Academy of Science (Light of West China Program)
文摘Soil erosion and bank degradation is a major post-dam concern regarding the riparian zone of the Three Gorges Reservoir. The development and succession of vegetation is a main countermeasure,especially to enhance bank stability and mitigate soil erosion by the root system. In this study, the roots of four prevailing grass species, namely, Cynodon dactylon, Hemarthria altissima, Hemarthria compressa, and Paspalum paspaloides, in the riparian zone were investigated in relation to additional soil cohesion. Roots were sampled using a single root auger. Root length density(RLD) and root area ratio(RAR) were measured by using the Win RHIZO image analysis system. Root tensile strength(TR) was performed using a manualdynamometer, and the soil reinforcement caused by the roots was estimated using the simple Wu's perpendicular model. Results showed that RLD values of the studied species ranged from 0.24 cm/cm3 to20.89 cm/cm3 at different soil layers, and RLD were significantly greater at 0–10 cm depth in comparison to the deeper soil layers(>10 cm). RAR measurements revealed that on average 0.21% of the reference soil area was occupied by grass roots for all the investigated species. The measured root tensile strength was the highest for P. paspaloides(62.26MPa) followed by C. dactylon(51.49 MPa), H.compressa(50.66 MPa), and H. altissima(48.81MPa). Nevertheless, the estimated maximum root reinforcement in this investigation was 22.5 k Pa for H.altissima followed by H. compressa(21.1 k Pa), P.paspaloides(19.5 k Pa), and C. dactylon(15.4 k Pa) at0–5 cm depth soil layer. The root cohesion values estimated for all species were generally distributed at the 0–10 cm depth and decreased with the increment of soil depth. The higher root cohesion associated with H. altissima and H. compressa implies their suitability for revegetation purposes to strengthen the shallow soil in the riparian zone of the Three Gorges Reservoir. Although the soil reinforcement induced by roots is only assessed from indirect indicators, the present results still useful for species selection in the framework of implementing and future vegetation recovery actions in the riparian zone of the Three Gorges Reservoir and similar areas in the Yangtze River Basin.
基金Sponsored by Follow-up Research Program of the Three Gorges(2013HXKY2-3)
文摘Water level fluctuation zone(hereinafter referred to as "WLFZ") is a transitional ecosystem between terrestrial ecosystem and aquatic ecosystem,and also a key area to control its neighboring terrestrial and aquatic ecosystem. After the Three Gorges Reservoir was put into use,ecological environment of its WLFZ has aroused wide concern from domestic and foreign experts. On the basis of introducing characteristics of WLFZ of the Three Gorges Reservoir,current ecological environment and main problems of this area were analyzed,plant selection and configuration was elaborated as well as the implementation effect of many WLFZ protection and ecological restoration modes. In view of the actual conditions,pertinent suggestions were proposed for WLFZ of the Three Gorges Reservoir,namely classified protection and ecological restoration,enhancing monitoring and assessment of current situation and change tendency,carrying out technical researches and demonstration of WLFZ wetland ecological restoration.
基金Supported by the National Natural Science Foundation of China(Grant No.51604236)Science and Technology Program of Sichuan Province(Grant No.2018JY0436)the Sichuan Province Youth Science and Technology Innovation Team Project(Grant No.2016TD0016)
文摘Focused on the lost circulation control in deep naturally fractured reservoirs, the multiscale structure of fracture plugging zone is proposed based on the theory of granular matter mechanics, and the structural failure pattern of plugging zone is developed to reveal the plugging zone failure mechanisms in deep, high temperature, high pressure, and high in-situ stress environment. Based on the fracture plugging zone strength model, key performance parameters are determined for the optimal selection of loss control material(LCM). Laboratory fracture plugging experiments with new LCM are carried out to evaluate the effect of the key performance parameters of LCM on fracture plugging quality. LCM selection strategy for fractured reservoirs is developed. The results show that the force chain formed by LCMs determines the pressure stabilization of macro-scale fracture plugging zone. Friction failure and shear failure are the two major failure patterns of fracture plugging zone. The strength of force chain depends on the performance of micro-scale LCM, and the LCM key performance parameters include particle size distribution, fiber aspect ratio, friction coefficient, compressive strength, soluble ability and high temperature resistance. Results of lab experiments and field test show that lost circulation control quality can be effectively improved with the optimal material selection based on the extracted key performance parameters of LCMs.
文摘The KT-II layer in the Zananor Oilfield,Caspian Basin,Kazakhstan,contains carbonate reservoirs of various types.The complex pore structure of the reservoirs have made it difficult to identify watered-out zones with traditional logging interpretation methods.This study classifies the reservoirs on the basis of core analysis and establishes an identification model for watered-out layers in the field to effectively improve the interpretation accuracy.Thin section analysis shows that there are three types of pores in the reservoirs,i.e.,the matrix pore,fracture and dissolution vug.A triple porosity model is used to calculate the porosities of the reservoirs and the results are combined with core analysis to classify the reservoirs into the fractured,matrix pore,fracture-pore as well as composite types.A classification standard is also proposed.There are differences in resistivity logging responses from the reservoirs of different types before and after watering-out.The preewatering-out resistivities are reconstructed using generalized neural network for different types of reservoirs.The watered-out layers can be effectively identified according to the difference in resistivity curves before and after watering-out.The results show that the watered-out layers identified with the method are consistent with measured data,thus serving as a reference for the evaluation of watered-out layers in the study area.
基金funded by Science and Technology Major Project of China National Offshore Oil Corporation(CNOOC-KJ 135 ZDXM36 TJ 08TJ).
文摘Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.
基金supported by China national petroleum corporation science and technology development projects(No.2011D_4101)
文摘The reservoir pore structure controls the reservoir quality and resistivity response of hydrocarbon-bearing zones and thus, critically affects logging interpretation. We use petrophysical data in three types of reservoir with different pore structure characteristics to show that the complexity of pore structure had a significant effect on the effective porosity and permeability regardless of geological factors responsible for the formation of pore structure. Moreover,, the distribution and content of conductive fluids in the reservoir varies dramatically owing to pore structure differences, which also induces resistivity variations in reservoir rocks. Hence, the origin of low-resistivity hydrocarbon-bearing zones, except for those with conductive matrix and mud filtrate invasion, is attributed to the complexity of the pore structures. Consequently, reservoir-specific evaluation models, parameters, and criteria should be chosen for resistivity log interpretation to make a reliable evaluation of reservoir quality and fluids.
基金the State Key Basic Research Plan 973 Project(2006CB202308)
文摘Superimposed basins in West China have experienced multi-stage tectonic events and multicycle hydrocarbon reservoir formation, and complex hydrocarbon reservoirs have been discovered widely in basins of this kind. Most of the complex hydrocarbon reservoirs are characterized by relocation, scale re-construction, component variation and phase state transformation, and their distributions are very difficult to predict. Research shows that regional caprock (C), high-quality sedimentary facies (Deposits, D), paleohighs (Mountain, M) and source rock (S) are four geologic elements contributing to complex hydrocarbon reservoir formation and distribution of western superimposed basins. Longitudinal sequential combinations of the four elements control the strata of hydrocarbon reservoir formation, and planar superimpositions and combinations control the range of hydrocarbon reservoir and their simultaneous joint effects in geohistory determine the time of hydrocarbon reservoir formation. Multiple-element matching reservoir formation presents a basic mode of reservoir formation in superimposed basins, and we recommend it is expressed as T-CDMS. Based on the multiple-element matching reservoir formation mode, a comprehensive reservoir formation index (Tcdms) is developed in this paper to characterize reservoir formation conditions, and a method is presented to predict reservoir formation range and probability of occurrence in superimposed basins. Through application of new theory, methods and technology, the favorable reservoir formation range and probability of occurrence in the Ordovician target zone in Tarim Basin in four different reservoir formation periods are predicted. Results show that central Tarim, Yinmaili and Lunnan are the three most favorable regions where Ordovician oil and gas fields may have formed. The coincidence of prediction results with currently discovered hydrocarbon reservoirs reaches 97 %. This reflects the effectiveness and reliability of the new theory, methods and technology.
基金Financial support for this study was jointly provided by the National Natural Science Foundation of China(Grant No.41430750)National Key Basic Research Program of China(Grant Nos.2015CB452704,2016YFC0402301)the Chinese Academy of Sciences(Grant Nos.KFJ-EW-STS-008,KFJSW-STS-175)
文摘Surface soil/sediment samples were collected from the Water-Level Fluctuation Zone(WLFZ), cultivated land and forest land at 50 different grid points from Shenjia watershed, the Three Gorges Reservoir area in August 2013. The spatial distribution, sources and ecological risk assessment for Arsenic(As), Cadmium(Cd),Chromium(Cr), Copper(Cu), Nickel(Ni), Lead(Pb)and Zinc(Zn) were analyzed in this study. The results showed all tested metals had similar distribution patterns except Ni and Cr, with areas of high concentrations distributed in the southwest(WLFZ and watershed outlet) of the study area. Ni and Cr,which were highly positively correlated and present in high concentrations, were primarily distributed in the south and middle zones of the study area. Lower concentration areas of all metals were uniformly distributed west of the high-elevation zones and forest land. Factor analysis(FA) and factor analysismultiple linear regression(FA-MLR) showed that the major sources of Cd were fertilizer and traffic sources,which together accounted for 87% of Cd. As, Zn and Cu levels were primarily supplied by industrial and domestic sources, accounting for 76% of As, 75% of Cu and 67% of Zn. Surface soils/sediments of the study watershed contaminated by Cd represent a high ecological risk, whereas other metals represent low ecological risks. The potential ecological risk index(PERI) analysis indicated that it had a low(widerange) ecological risk and a moderate(small-range)ecological risk primarily distributed in the outlet of the study watershed. Fertilizers and traffic are the primary sources of Cd pollution, which should be more closely controlled for the purposes of water quality and ecological conservation.
基金supported by the National Science and Technology Major Project(Grant No.2016ZX05046-001)the Petroleum Science Research and Technology Development Project,Petro China(Grant No.2016B-0301)
文摘Taking the Jurassic Sangonghe Formation in the Mosuowan-Mobei area of the Junggar Basin as an example, this paper provides a method that evaluates paleo hydrocarbon pools and predicts secondary reservoirs. Through Quantitative Grain Fluorescence (QGF) experiments, well-tie seismic correlation, and paleo structure analysis, the scale and distribution of paleo hydrocarbon pools in the study area are outlined. Combining current structural features and fault characteristics, the re-migration pathways of paleo oil and gas are depicted. Based on barrier conditions on the oil re-migration pathways and current reservoir distribution, we recognize three types of secondary reservoirs. By analyzing structural evolution and sand body-fault distribution, the major control factors of secondary reservoirs are specified and, consequently, favorable zones for secondary reservoirs are predicted. The results are mainly as follows. (1) In the primary accumulation period in the Cretaceous, paleo hydrocarbon pools were formed in the Sangonghe Formation of the Mosuowan uplift and their size and distribution were extensive and the exploration potential for secondary reservoirs should not be ignored. Besides, paleo reservoirs were also formed in the Mobei uplift, but just small scale. (2) In the adjustment period in the Neogene, traps were reshaped or destroyed and so were the paleo reservoirs, resulting in oil release. The released oil migrated linearly northward along the structural highs of the Mobei uplift and the Qianshao low-relief uplift and then formed secondary reservoirs when it met new traps. In this process, a structural ridge cooperated with sand bodies and faults, applying unobstructed pathways for oil and gas re-migration. (3) The secondary hydrocarbon pools are classified into three types: low-relief anticlinal type, lithologic pinch-out type and fault block type. The distribution of the first type is controlled by a residual low uplift in the north flank of the paleo-anticline. The second type is distributed in the lithologic pinch-out zones on the periphery of the inherited paleo uplift. The third type is controlled by fault zones of which the strikes are perpendicular to the hydrocarbon re-migration pathways. (4) Four favorable zones for secondary reservoirs are predicted: the low-relief structural zone of the north flank of the Mosuowan paleo-anticline, the fault barrier zone on the western flank of the Mobei uplift, the Qianshao low-relief uplift and the north area of the Mobei uplift that parallels the fault zone. The study above effectively supports the exploration of the Qianshao low-relief uplift, with commercial oil discovered in the Qianshaol well. Besides, the research process in this paper can also be applied to other basins to explore for secondary reservoirs.
文摘A perforating hole is a channel through which the oil and gas in a reservoir pass into the production well bore.During the process of perforating due to explosion,the surrounding sandstone will be damaged to a certain extent,which will increase the well bore skin and lead to the decrease of production consequently.In this work a mechanical model of perforating damage is developed to describe the influences of perforating due to explosion on the porosity and permeability of the surrounding sandstone near the compaction zone.Based on this developed model,the important data related to the damage of sandstone,such as matrix effective stress,plastic deformation,volumetric strain,and so on,can be numerically simulated.Especially the behaviors of plasticity kinematic hardening at high strain rate due to impact loads,which are the important characteristics in the sandstone,is taken into account in this developed model.Both numerical and testing results show that the damage due to perforation in the sandstone can be accurately predicted by the developed model together with the porosity and permeability evolving model of perforation in a compaction zone.As a practical application,a methodology for the analysis of damage of porosity and permeability around a perforation tunnel is supposed based on the developed model and the core flow efficiency test of interparticle pore spaced sandstone target in China Shengli Oilfield and the computed tomography test.
基金supported financially by the Public Project(20080219)of Ministry of Science and Technology in China
文摘Objective To define and evaluate the malaria transmission potential in the Yangtze River, following construction of the Three Gorges Reservoir. Methods Six villages, namely, Kaixian, Fengjie, Wanzhou, Fuling, Yubei, and Zigui were selected for investigating the malaria transmission potential in the reservoir. Transmission potential was estimated by mathematical modeling and evaluation of the local malaria situation. Factors that influenced the transmission potential were analyzed using Poisson regression analysis in combination with Grey Systematic Theory (based on evaluation by the Delphi method). Results Indirect fluorescent antibody data and the incidence of malaria in the local population were consistent with the malaria transmission potential calculated for the area. Multivariate Poisson regression analysis showed a statistically significant association between the riparian zone and the man‐biting rate. Conclusion The risk of a malaria epidemic can be forecasted using the malaria transmission potential parameters investigated here which was closely correlated with the riparian zone.
基金financially supported by the National Natural Science Foundation of China (41430750, 41301293)the National Key R&D Program of China (2017YFD0800505, 2016YFC0402301)
文摘Ruxi River is a tributary of the Three Gorges Reservoir. This study examined the temporal and spatial dynamics in particle size characteristics and the associated nutrients and contaminants of the fluvial suspended and deposited sediments along the Ruxi River. Temporal variations in the particle size distribution of the suspended sediment are controlled mainly by differences in sediment source during different seasons. Total organic carbon (TOC), total nitrogen (TN) and total phosphorous (TP) in the 〈 62 μm fraction of the suspended sediment exhibit considerably higher concentrations in spring, indicating high probability of algal blooms in the backwater areas. Downstream trends in the nutrient contents of 〈 62 pm deposited sediments imply the greatest potential for eutrophication in the backwater ends, where highest nutrient concentrations were detected. Assessment of metal contamination shows that the sediments deposited in the water-level fluctuation zone were moderately to strongly contaminated by Cadmium (Cd), with a considerably high potential ecological risk. The findings reported have emphasized the impacts of reservoir impoundment on aquatic and/or terrestrial environment in this region. More information on physical, chemical and biological processes of sediment and sediment-associated materials are needed for developing ecologically sound policies management. environmentally and of water and sediment