This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile device...This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile devices such as laptops, video cameras and car navigation systems. In mobile applications, high durability towards external vibrations and shocks are essentials to the bearings of HDD spindle motor. In addition, the bearing characteristics are influenced by manufacturing error because of small size of the bearings of HDD. In this paper, the geometrical optimization is carried out to maximize the bearing stiffness using sequential quadratic programming to improve vibration characteristics. Additionally, the bearing stiffness is analyzed considering dimensional tolerance of the bearing using statistical method. The dimensional tolerance is assumed to distribute according to the Gaussian distribution, and then the bearing stiffness is estimated by combining the expectation and standard deviation. As a result, in the robust optimum design, new groove geometry of bearing can be obtained in which the bearing stiffness is four times higher than the stiffness of conventional spiral groove bearing. Moreover, the bearing has lower variability compared with the result of optimum design neglecting dimensional tolerance.展开更多
According to the dimensional tolerances on hydrodynamic journal bearing system, a nonlinear oil film force model was established,and the Reynolds' equation was solved by adopting finite difference method. In order...According to the dimensional tolerances on hydrodynamic journal bearing system, a nonlinear oil film force model was established,and the Reynolds' equation was solved by adopting finite difference method. In order to fulfill different dimensional tolerances in the system,adopting 2kfactor design and using the eccentricity ratio corresponding to the stability critical curve,the effects of the friction power loss brought by the dimensional tolerances of the dynamic viscosity,bearing width,bearing diameter and journal diameter were analyzed. The effect on dynamic characteristics of the hydrodynamic journal bearing system was quantitatively analyzed,and the nonlinear dynamic analysis, modeling and calculation methods were studied while considering the manufacturing tolerances. The results show that in contrast to the impacts of the tolerances in journal diameter,dynamic viscosity and bearing width,the bearing diameter tolerance would lead to the rise in the power loss, and the dimensional tolerances have different degrees of impacts on the journal bearing system. The friction power loss decreased as the eccentricity ratio increased, and when the eccentricity ratio was 0. 695 the power loss came to the minimum.The investigation would find the best solution and reduce energy consumption,then control varieties of nonlinear dynamical behavior effectively,and provide a theoretical basis for hydrodynamic journal bearing system in parameter design.展开更多
The current research of hydrodynamic bearing in blood pump mainly focuses on the bearing structure design.Compared with the typical plane slider bearing and Rayleigh step bearing,spiral groove bearing has excellent pe...The current research of hydrodynamic bearing in blood pump mainly focuses on the bearing structure design.Compared with the typical plane slider bearing and Rayleigh step bearing,spiral groove bearing has excellent performance in load-carrying capacity.However,the load-carrying capacity would decrease significantly with increasing flow rate in conventional designs.In this paper,the special treatment is made to the upper spiral groove bearing to make sure that both the circulatory flowing and load-carrying capacity are high.Three-dimensional computational fluid dynamics(CFD) models in the space between rotor and shaft are developed by using FLUENT software.Effects of groove number,film height and groove depth on load-carrying capacity of the spiral groove bearings are investigated by orthogonal experiment design.The experimental results show that film height is the most remarkable factor to the load-carrying capacity.The variation tendency of load-carrying capacity reveals that the best combination of geometry is the one with groove number of 8,film height 0.03 mm and groove depth 0.08 mm.The velocity and pressure distributions in spiral groove bearings are also analyzed,and the analysis result shows that the distributions are in conformity with the design of the blood pump based on the principle of hydrodynamic bearing.The displacement of the rotor with the best combination parameters is tested by using laser displacement sensors,the testing result shows that the suspending performance is satisfactory both in axial and radial directions.This research proposes a bearing design method which has sufficient load-carrying capacity to support rotor as an effective passive hydrodynamic bearing.展开更多
As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as ...As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields,the studies in the field of water-lubricated bearing remain insufficient.To enhance vibration reduction performance,a fluid-saturated perforated slab is designed in this study,and via the establishment of a fluid-solid coupled vibration model,the influence law and impact levels were analyzed and verified by simulation and experiments.The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing,and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water.Additionally,the increase in fluid fraction did not enhance the damping effect,instead,it unexpectedly reduced the natural frequency of the raw material significantly.This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft,and presents the best volume fraction of the liquid phase.展开更多
The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model...The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model with consideration of the effects of turbulence, two-phase flow, and temperature on the pressure field at bearing surface is proposed here. Using this model, the Reynolds' equation and energy equation are solved in which the thermo- physical properties of the water as lubricant are taken into account. The dependency of characteristics of bearing, such as load-earrying capacity, flow rate (pumping losses ), and frictional losses, on angular velocity, conical angle, and radial eccentricities, is presented. The research results are beneficial to the improvement of the efficiency of conical bearing and the environmental protection.展开更多
The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental ...The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental material.First,the lubrication mechanism of elastic foil gas bearing is analyzed.Then,the numerical solution process of the static bearing capacity and friction torque is analyzed,including the discretization of the governing equation of rarefied gas pressure based on the non-dimensional modified Reynolds equation and the over relaxation iteration method,the grid planning within the calculation range,the static solution of boundary parameters and static solution of the numerical process.Finally,the solution program is analyzed.The experimental data in National Aeronautics and Space Administration(NASA)public literature are compared with the simulation results of this exploration,so as to judge the accuracy of the calculation process.The results show that under the same static load,the difference between the minimum film thickness calculated and the test results is not obvious;when the rotor speed of the bearing is 60000 r/min,the influence of the boundary slip effect increases with the increase of the micro groove depth on the flat foil surface;when the eccentricity or the micro groove depth of the bearing increases,the bearing capacity will be strengthened.When the eccentricity is 6µm and 14µm,the viscous friction torque of the new foil bearing increases significantly with the increase of the depth of the foil micro groove,but when the eccentricity is 22µm,the viscous friction torque does not change with the change of the depth of the foil micro groove.It shows that the bearing capacity and performance of foil bearing are improved.展开更多
In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, tempera...In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, temperature rise as well as the angular speed ratio between the floating ring and runner.Meanwhile, a parameter study is also conducted on the characteristics of floating-ring thrust bearings.Finally, the theoretical calculation results are verified by experiments.展开更多
Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bea...Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bearings is a potential approach to solve this problem,which is collectively called intelligent bearings.In this literature review,the recent progress of electrical resistance strain gauges,Fiber Bragg grating,triboelectric nanogenerators,piezoelectric nanogenerators,and thermoelectric sensors for in-situ monitoring is summarized.Future research and design concepts on intelligent water-lubrication bearings are also comprehensively discussed.The findings show that the accident risks,lubrication condition,and remaining life of water-lubricated bearings can be evaluated with the surface temperature,coefficient of friction,and wear volume monitoring.The research work on intelligent water-lubricated bearings is committed to promoting the development of green,electrified,and intelligent technologies for ship propulsion systems,which have important theoretical significance and application value.展开更多
Tilting pad gas journal bearing is one of the most widely used types of aerodynamic bearings due to its inherent excellent stability in high speed applications.A practical method for analyzing and calculating the per-...Tilting pad gas journal bearing is one of the most widely used types of aerodynamic bearings due to its inherent excellent stability in high speed applications.A practical method for analyzing and calculating the per- formances of such bearings is presented as well as its rotordynamics based on the computer aided technique.The method of calculation and the philosophy of programming with a microcomputer for the computer aided analysis are highlighted.展开更多
A theoretical study has been performed to investigate the influence of manufacturing errors on the bearing housing of a gas lubricated journal bearing with compliant surface I in particular on the bearing load capacit...A theoretical study has been performed to investigate the influence of manufacturing errors on the bearing housing of a gas lubricated journal bearing with compliant surface I in particular on the bearing load capacity. A gas film thickness distribution is presented, in which errors o f both circumferential and axial bearing housing are considered. The influence of the errors on bearing performance is compared between rigid and compliant surface bearings. It was shown that the compliant surface bearings are less sensitive to the manufacturing errors than the rigid surface bearings. Thelefore, the cost of compliant surface bearing could be reduced by setting a larger manufacturing error tolerance.展开更多
The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models...The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang's combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.展开更多
With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed shi...With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed ships,water-lubricated bearings with high performance are more strictly required.However,due to the lubricating medium,water-lubricated bearings have many problems such as friction,wear,vibration,noise,etc.This review focuses on the performance of marine water-lubricated bearings and their failure prevention mechanism.Furthermore,the research of marine water-lubricated bearings is reviewed by discussing its lubrication principle,test technology,friction and wear mechanism,and friction noise generation mechanism.The performance enhancement methods have been overviewed from structure optimization and material modification.Finally,the potential problems and the perspective of water-lubricated bearings are given in detail.展开更多
The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During ...The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During the hydrodynamic modelling,the coupling hydrodynamic pressure between the journal bearing and the thrust bearing is considered.The mixed lubrication performances of the microgroove journal-thrust bearing with five different bottom shapes,including rectangle,semi-ellipse,right triangle,isosceles triangle and left triangle,are compared.Based on the numerical results,the optimal microgroove bottom shape of the journal bearing and tilting angle of the thrust pad are determined.Additionally,the comparative analysis shows that the coupled bearing with left triangle microgroove bottom shape exhibits the optimal mixed lubrication performance.The numerical result also indicates that the optimal inclination angle of the thrust bearing pad is 0.01°for the current simulation case.展开更多
Hydro generators installed in Itaipu Binacional power plant with 824/737 MVA rated output power (50/60 Hz) belong to the largest ones in the world. Among many unique features, the generators are equipped with the la...Hydro generators installed in Itaipu Binacional power plant with 824/737 MVA rated output power (50/60 Hz) belong to the largest ones in the world. Among many unique features, the generators are equipped with the largest hydrodynamic thrust bearings ever built (external diameter 5,200 mm, axial load equals approximately 3,600 t). This paper is an attempt to propose a new thrust bearing design with the use of the state-of-the-art technologies and simulation techniques that demonstrate a reduction of friction power losses generated by the thrust bearing. This paper is divided into two parts. Within the first one, the original thrust bearing design which was implemented in the generators is described. Related calculation results based on a TEHD (thermo-elasto-hydrodynamic) calculation software used by Alstom will be presented. A comparison between measurement results gathered in the 1980s is given. In the second part, a potential solution of a more beneficial bearing design is described. The proposed thrust bearing design modification is an implementation of Alstom's PolypadTM coating. This modern polymer (PEEK) coating material has already been used by Alstom in projects around the world for many years. This coating allows pushing the operating parameters limits toward higher temperatures and lower oil film thicknesses far beyond the limits known for the conventional bearing materials.展开更多
Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the populariz...Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the popularization and application of water-lubricated bearings.Learning from nature,the phenomenon of low friction and wear in nature has aroused great interest of scientists,and a lot of research has been carried out from mechanism analysis to bionic application.In this review,our purpose is to provide guiding methods and analysis basis for the bionic design and theoretical research of anti-friction and anti-wear of water-lubricated bearings.The development of water-lubricated bearing materials are described.Some typical examples of natural friction reduction and drag reduction are introduced in detail,and several representative preparation methods are listed.Finally,the application status of bionic tribology in water-lubricated bearings is summarized,and the future development direction of water-lubricated bearings is prospected.展开更多
Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as...Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as well as the low viscosity and poor load-carrying capacity of water,resulting in poor lubricating film integrity and short material service life under low-speed,heavy-load,start-stop conditions,which limits its application.To study the relationship between wettability and lubrication state and improve the lubrication performance of Si_(3)N_(4) under water lubrication conditions,the characteristic parameters that determine the hydrophilicity of Sphagnum were detected and extracted,and the bionic Si_(3)N_(4) model was established using Material Studio.Then,the molecular dynamic behavior and tribological properties of different Si_(3)N_(4) models were simulated and analyzed.Pore structure affects the spreading and storage of water on the material surface and changes the wettability of the material.Under the condition of water lubrication,better wettability and water storage promote the formation of water film,effectively improve the lubrication state of the material,and improve its bearing performance.展开更多
The stiffness and dampness parameters of journal bearings are required in rectangular coordinates for analyzing the stability boundary and threshold speed of oil film bearings.On solving the Reynolds equation,the oil ...The stiffness and dampness parameters of journal bearings are required in rectangular coordinates for analyzing the stability boundary and threshold speed of oil film bearings.On solving the Reynolds equation,the oil film force is always obtained in polar coordinates;thus,the stiffness and dampness parameters can be easily obtained in polar coordinates.Therefore,the transformation between the polar and rectangular coordinates of journal bearing stiffness and dampness parameters is discussed in this study.展开更多
Formations of clots were found inside the hydrodynamic bearings of the left ventricular assisted devices (LVADs) and caused tremendous risks to the long-term use of these devices. For the hydrodynamic bearings used in...Formations of clots were found inside the hydrodynamic bearings of the left ventricular assisted devices (LVADs) and caused tremendous risks to the long-term use of these devices. For the hydrodynamic bearings used in the LVAD, not only the lubrication status but also the motion of the blood cells in the bearing will take great effect on the performance of the device. Based on the analysis of the hydrodynamic pressures distribution and the flowing trajectory of red blood cells in the lubrication film, the bearing is designed in a region where enough hydrodynamic pressure is generated to float the rotor to reduce the wear, and the entrainment of red blood cells in the gap of the bearing can be prevented to avoid the formation of clots.展开更多
The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destr...The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destructive monitoring technology,but polymer materials are characterized by viscoelasticity,heterogeneity,and large acoustic attenuation,making it challenging to extract ultrasonic echo signals.Therefore,this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic reflection coefficient.The effects of bearing parameters,objective function,and algorithm parameters on the identification results are simulated and analyzed.Taking the correlation coefficient and root mean square error as the matching parameters,the thickness,sound velocity,density,and attenuation factor of the bearing are inversed simultaneously by utilizing the differential evolution algorithm(DEA),and the wear measurement system is constructed.In order to verify the identification accuracy of this method,an accelerated wear test under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-etherketone(PEEK)fixed pad and stainless-steel thrust collar as the object.The thickness of pad was measured using the high-precision spiral micrometer and ultrasonic testing system,respectively.Ultimately,the results demonstrate that the thickness identification error of this method is approximately 1%,and in-situ monitoring ability will be realized in the future,which is of great significance to the life prediction of bearings.展开更多
The problem of hydrodynamics of the three-leaf dislocated floating-ring bearing was studied by means of boundary element method.The law including the distribution of pressure on boundary surface(axial,bearing and floa...The problem of hydrodynamics of the three-leaf dislocated floating-ring bearing was studied by means of boundary element method.The law including the distribution of pressure on boundary surface(axial,bearing and floating-ring)and its friction loss in different eccentricities was obtained.The results show that the inner friction of three-leaf dislocated bearing increases from 390.875to 1 091.65,and the inner friction of three-leaf dislocated floating-ring bearing increases from 94.2523to 114.5069with eccentricity varying from 0to 0.075in nondimensional.So changing the pressure and flow field of bearing by adding floating-ring is more stability and less wasted work of friction than three-leaf dislocated bearing.展开更多
文摘This paper describes the robust optimum design which combines the geometrical optimization method proposed by Hashimoto and statistical method. Recently, 2.5″ hard disk drives (HDDs) are widely used for mobile devices such as laptops, video cameras and car navigation systems. In mobile applications, high durability towards external vibrations and shocks are essentials to the bearings of HDD spindle motor. In addition, the bearing characteristics are influenced by manufacturing error because of small size of the bearings of HDD. In this paper, the geometrical optimization is carried out to maximize the bearing stiffness using sequential quadratic programming to improve vibration characteristics. Additionally, the bearing stiffness is analyzed considering dimensional tolerance of the bearing using statistical method. The dimensional tolerance is assumed to distribute according to the Gaussian distribution, and then the bearing stiffness is estimated by combining the expectation and standard deviation. As a result, in the robust optimum design, new groove geometry of bearing can be obtained in which the bearing stiffness is four times higher than the stiffness of conventional spiral groove bearing. Moreover, the bearing has lower variability compared with the result of optimum design neglecting dimensional tolerance.
基金National Natural Science Foundations of China(No.11272100,No.50865001)
文摘According to the dimensional tolerances on hydrodynamic journal bearing system, a nonlinear oil film force model was established,and the Reynolds' equation was solved by adopting finite difference method. In order to fulfill different dimensional tolerances in the system,adopting 2kfactor design and using the eccentricity ratio corresponding to the stability critical curve,the effects of the friction power loss brought by the dimensional tolerances of the dynamic viscosity,bearing width,bearing diameter and journal diameter were analyzed. The effect on dynamic characteristics of the hydrodynamic journal bearing system was quantitatively analyzed,and the nonlinear dynamic analysis, modeling and calculation methods were studied while considering the manufacturing tolerances. The results show that in contrast to the impacts of the tolerances in journal diameter,dynamic viscosity and bearing width,the bearing diameter tolerance would lead to the rise in the power loss, and the dimensional tolerances have different degrees of impacts on the journal bearing system. The friction power loss decreased as the eccentricity ratio increased, and when the eccentricity ratio was 0. 695 the power loss came to the minimum.The investigation would find the best solution and reduce energy consumption,then control varieties of nonlinear dynamical behavior effectively,and provide a theoretical basis for hydrodynamic journal bearing system in parameter design.
基金supported by National Natural Science Foundation of China(Grant No.51275461)Zhejiang Provincial Natural Science Foundation of China(Grant No.Z1110189)+1 种基金National Hi-tech Research and Development Program of China(863 ProgramGrant No.2009AA045401)
文摘The current research of hydrodynamic bearing in blood pump mainly focuses on the bearing structure design.Compared with the typical plane slider bearing and Rayleigh step bearing,spiral groove bearing has excellent performance in load-carrying capacity.However,the load-carrying capacity would decrease significantly with increasing flow rate in conventional designs.In this paper,the special treatment is made to the upper spiral groove bearing to make sure that both the circulatory flowing and load-carrying capacity are high.Three-dimensional computational fluid dynamics(CFD) models in the space between rotor and shaft are developed by using FLUENT software.Effects of groove number,film height and groove depth on load-carrying capacity of the spiral groove bearings are investigated by orthogonal experiment design.The experimental results show that film height is the most remarkable factor to the load-carrying capacity.The variation tendency of load-carrying capacity reveals that the best combination of geometry is the one with groove number of 8,film height 0.03 mm and groove depth 0.08 mm.The velocity and pressure distributions in spiral groove bearings are also analyzed,and the analysis result shows that the distributions are in conformity with the design of the blood pump based on the principle of hydrodynamic bearing.The displacement of the rotor with the best combination parameters is tested by using laser displacement sensors,the testing result shows that the suspending performance is satisfactory both in axial and radial directions.This research proposes a bearing design method which has sufficient load-carrying capacity to support rotor as an effective passive hydrodynamic bearing.
基金Supported by State Key Program Grant of National Natural Science Foundation of China(Grant No.51579198)Key Laboratory of High Performance Ship Technology Opening Foundation(Grant No.2016gxnc04).
文摘As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields,the studies in the field of water-lubricated bearing remain insufficient.To enhance vibration reduction performance,a fluid-saturated perforated slab is designed in this study,and via the establishment of a fluid-solid coupled vibration model,the influence law and impact levels were analyzed and verified by simulation and experiments.The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing,and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water.Additionally,the increase in fluid fraction did not enhance the damping effect,instead,it unexpectedly reduced the natural frequency of the raw material significantly.This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft,and presents the best volume fraction of the liquid phase.
基金Natural Science Foundation of Heilongjiang Province of China (No.LC2009C05)
文摘The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model with consideration of the effects of turbulence, two-phase flow, and temperature on the pressure field at bearing surface is proposed here. Using this model, the Reynolds' equation and energy equation are solved in which the thermo- physical properties of the water as lubricant are taken into account. The dependency of characteristics of bearing, such as load-earrying capacity, flow rate (pumping losses ), and frictional losses, on angular velocity, conical angle, and radial eccentricities, is presented. The research results are beneficial to the improvement of the efficiency of conical bearing and the environmental protection.
文摘The purpose is to accurately predict the performance of foil bearing and achieve accurate results in the design of foil bearing structure.A new type of foil bearing with surface microstructure is used as experimental material.First,the lubrication mechanism of elastic foil gas bearing is analyzed.Then,the numerical solution process of the static bearing capacity and friction torque is analyzed,including the discretization of the governing equation of rarefied gas pressure based on the non-dimensional modified Reynolds equation and the over relaxation iteration method,the grid planning within the calculation range,the static solution of boundary parameters and static solution of the numerical process.Finally,the solution program is analyzed.The experimental data in National Aeronautics and Space Administration(NASA)public literature are compared with the simulation results of this exploration,so as to judge the accuracy of the calculation process.The results show that under the same static load,the difference between the minimum film thickness calculated and the test results is not obvious;when the rotor speed of the bearing is 60000 r/min,the influence of the boundary slip effect increases with the increase of the micro groove depth on the flat foil surface;when the eccentricity or the micro groove depth of the bearing increases,the bearing capacity will be strengthened.When the eccentricity is 6µm and 14µm,the viscous friction torque of the new foil bearing increases significantly with the increase of the depth of the foil micro groove,but when the eccentricity is 22µm,the viscous friction torque does not change with the change of the depth of the foil micro groove.It shows that the bearing capacity and performance of foil bearing are improved.
文摘In this paper, floating--ring thrust bearings are investigated. A mathematical model is established to analyze the static performance of this kind of bearings, such as the load capacity, frictional power loss, temperature rise as well as the angular speed ratio between the floating ring and runner.Meanwhile, a parameter study is also conducted on the characteristics of floating-ring thrust bearings.Finally, the theoretical calculation results are verified by experiments.
基金Supported by the National Natural Science Foundation of China(Grant No.52171319).
文摘Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bearings is a potential approach to solve this problem,which is collectively called intelligent bearings.In this literature review,the recent progress of electrical resistance strain gauges,Fiber Bragg grating,triboelectric nanogenerators,piezoelectric nanogenerators,and thermoelectric sensors for in-situ monitoring is summarized.Future research and design concepts on intelligent water-lubrication bearings are also comprehensively discussed.The findings show that the accident risks,lubrication condition,and remaining life of water-lubricated bearings can be evaluated with the surface temperature,coefficient of friction,and wear volume monitoring.The research work on intelligent water-lubricated bearings is committed to promoting the development of green,electrified,and intelligent technologies for ship propulsion systems,which have important theoretical significance and application value.
文摘Tilting pad gas journal bearing is one of the most widely used types of aerodynamic bearings due to its inherent excellent stability in high speed applications.A practical method for analyzing and calculating the per- formances of such bearings is presented as well as its rotordynamics based on the computer aided technique.The method of calculation and the philosophy of programming with a microcomputer for the computer aided analysis are highlighted.
文摘A theoretical study has been performed to investigate the influence of manufacturing errors on the bearing housing of a gas lubricated journal bearing with compliant surface I in particular on the bearing load capacity. A gas film thickness distribution is presented, in which errors o f both circumferential and axial bearing housing are considered. The influence of the errors on bearing performance is compared between rigid and compliant surface bearings. It was shown that the compliant surface bearings are less sensitive to the manufacturing errors than the rigid surface bearings. Thelefore, the cost of compliant surface bearing could be reduced by setting a larger manufacturing error tolerance.
文摘The main theoretical turbulence models for application to hydrodynamic lubrication problems were briefly reviewed, and the course of their development and their fundamentals were explained. Predictions by these models on flow fields in turbulent Couette flows and shear-induced countercurrent flows were compared to existing measurements, and Zhang & Zhang's combined k-ε model was shown to have surpassingly satisfactory results. The method of application of this combined k-ε model to high speed journal bearings and annular seals was summarized, and the predicted results were shown to be satisfactory by comparisons with existing experiments of journal bearings and annular seals.
基金financially supported by the National Key R&D Program of China(No.2018YFE0197600)National Natural Science Foundation of China(No.52071244).
文摘With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed ships,water-lubricated bearings with high performance are more strictly required.However,due to the lubricating medium,water-lubricated bearings have many problems such as friction,wear,vibration,noise,etc.This review focuses on the performance of marine water-lubricated bearings and their failure prevention mechanism.Furthermore,the research of marine water-lubricated bearings is reviewed by discussing its lubrication principle,test technology,friction and wear mechanism,and friction noise generation mechanism.The performance enhancement methods have been overviewed from structure optimization and material modification.Finally,the potential problems and the perspective of water-lubricated bearings are given in detail.
基金Project(51975064)supported by the National Natural Science Foundation of ChinaProject(cstc2018jcyj AX0442)supported by the General Projects of Basic Science and Frontier Technology Research of Chongqing,China+2 种基金Projects(2018M631059,2019T120805)supported by the Postdoctoral Science Foundation of ChinaProject(cstc2017zdcyzdzx X0001)supported by the Major Research and Development Program of ChinaProject supported by the Innovation Program on the Common and Key Technologise of Key Industries,China。
文摘The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During the hydrodynamic modelling,the coupling hydrodynamic pressure between the journal bearing and the thrust bearing is considered.The mixed lubrication performances of the microgroove journal-thrust bearing with five different bottom shapes,including rectangle,semi-ellipse,right triangle,isosceles triangle and left triangle,are compared.Based on the numerical results,the optimal microgroove bottom shape of the journal bearing and tilting angle of the thrust pad are determined.Additionally,the comparative analysis shows that the coupled bearing with left triangle microgroove bottom shape exhibits the optimal mixed lubrication performance.The numerical result also indicates that the optimal inclination angle of the thrust bearing pad is 0.01°for the current simulation case.
文摘Hydro generators installed in Itaipu Binacional power plant with 824/737 MVA rated output power (50/60 Hz) belong to the largest ones in the world. Among many unique features, the generators are equipped with the largest hydrodynamic thrust bearings ever built (external diameter 5,200 mm, axial load equals approximately 3,600 t). This paper is an attempt to propose a new thrust bearing design with the use of the state-of-the-art technologies and simulation techniques that demonstrate a reduction of friction power losses generated by the thrust bearing. This paper is divided into two parts. Within the first one, the original thrust bearing design which was implemented in the generators is described. Related calculation results based on a TEHD (thermo-elasto-hydrodynamic) calculation software used by Alstom will be presented. A comparison between measurement results gathered in the 1980s is given. In the second part, a potential solution of a more beneficial bearing design is described. The proposed thrust bearing design modification is an implementation of Alstom's PolypadTM coating. This modern polymer (PEEK) coating material has already been used by Alstom in projects around the world for many years. This coating allows pushing the operating parameters limits toward higher temperatures and lower oil film thicknesses far beyond the limits known for the conventional bearing materials.
基金the National Natural Science Foundation of China(Grant no.52171319).
文摘Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the popularization and application of water-lubricated bearings.Learning from nature,the phenomenon of low friction and wear in nature has aroused great interest of scientists,and a lot of research has been carried out from mechanism analysis to bionic application.In this review,our purpose is to provide guiding methods and analysis basis for the bionic design and theoretical research of anti-friction and anti-wear of water-lubricated bearings.The development of water-lubricated bearing materials are described.Some typical examples of natural friction reduction and drag reduction are introduced in detail,and several representative preparation methods are listed.Finally,the application status of bionic tribology in water-lubricated bearings is summarized,and the future development direction of water-lubricated bearings is prospected.
基金The authors would like to express their sincere gratitude to the National Natural Science Foundation of China(Grant no.52171319).
文摘Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as well as the low viscosity and poor load-carrying capacity of water,resulting in poor lubricating film integrity and short material service life under low-speed,heavy-load,start-stop conditions,which limits its application.To study the relationship between wettability and lubrication state and improve the lubrication performance of Si_(3)N_(4) under water lubrication conditions,the characteristic parameters that determine the hydrophilicity of Sphagnum were detected and extracted,and the bionic Si_(3)N_(4) model was established using Material Studio.Then,the molecular dynamic behavior and tribological properties of different Si_(3)N_(4) models were simulated and analyzed.Pore structure affects the spreading and storage of water on the material surface and changes the wettability of the material.Under the condition of water lubrication,better wettability and water storage promote the formation of water film,effectively improve the lubrication state of the material,and improve its bearing performance.
基金supported by science and technology research project of Hubei provincial department of education(No.Q20192603)doctoral research fund of Hubei University of Arts and Science(No.2059023)。
文摘The stiffness and dampness parameters of journal bearings are required in rectangular coordinates for analyzing the stability boundary and threshold speed of oil film bearings.On solving the Reynolds equation,the oil film force is always obtained in polar coordinates;thus,the stiffness and dampness parameters can be easily obtained in polar coordinates.Therefore,the transformation between the polar and rectangular coordinates of journal bearing stiffness and dampness parameters is discussed in this study.
基金This work is supported by the National Key R&D Program of China(2017YFCO111105)the funding of State Key Laboratory of Tribology,China(SKLT2018B03).
文摘Formations of clots were found inside the hydrodynamic bearings of the left ventricular assisted devices (LVADs) and caused tremendous risks to the long-term use of these devices. For the hydrodynamic bearings used in the LVAD, not only the lubrication status but also the motion of the blood cells in the bearing will take great effect on the performance of the device. Based on the analysis of the hydrodynamic pressures distribution and the flowing trajectory of red blood cells in the lubrication film, the bearing is designed in a region where enough hydrodynamic pressure is generated to float the rotor to reduce the wear, and the entrainment of red blood cells in the gap of the bearing can be prevented to avoid the formation of clots.
基金supported by the National Key R&D Program of China(No.2018YFE0197600)European Union’s Horizon 2020 Research and Innovation Programme RISE under Grant Agreement No.823759(REMESH)the National Natural Science Foundation of China(No.52071244).
文摘The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destructive monitoring technology,but polymer materials are characterized by viscoelasticity,heterogeneity,and large acoustic attenuation,making it challenging to extract ultrasonic echo signals.Therefore,this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic reflection coefficient.The effects of bearing parameters,objective function,and algorithm parameters on the identification results are simulated and analyzed.Taking the correlation coefficient and root mean square error as the matching parameters,the thickness,sound velocity,density,and attenuation factor of the bearing are inversed simultaneously by utilizing the differential evolution algorithm(DEA),and the wear measurement system is constructed.In order to verify the identification accuracy of this method,an accelerated wear test under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-etherketone(PEEK)fixed pad and stainless-steel thrust collar as the object.The thickness of pad was measured using the high-precision spiral micrometer and ultrasonic testing system,respectively.Ultimately,the results demonstrate that the thickness identification error of this method is approximately 1%,and in-situ monitoring ability will be realized in the future,which is of great significance to the life prediction of bearings.
基金National Natural Science Foundation of China(11362015)
文摘The problem of hydrodynamics of the three-leaf dislocated floating-ring bearing was studied by means of boundary element method.The law including the distribution of pressure on boundary surface(axial,bearing and floating-ring)and its friction loss in different eccentricities was obtained.The results show that the inner friction of three-leaf dislocated bearing increases from 390.875to 1 091.65,and the inner friction of three-leaf dislocated floating-ring bearing increases from 94.2523to 114.5069with eccentricity varying from 0to 0.075in nondimensional.So changing the pressure and flow field of bearing by adding floating-ring is more stability and less wasted work of friction than three-leaf dislocated bearing.