A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites fi...Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCr15 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix.展开更多
Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bea...Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bearings is a potential approach to solve this problem,which is collectively called intelligent bearings.In this literature review,the recent progress of electrical resistance strain gauges,Fiber Bragg grating,triboelectric nanogenerators,piezoelectric nanogenerators,and thermoelectric sensors for in-situ monitoring is summarized.Future research and design concepts on intelligent water-lubrication bearings are also comprehensively discussed.The findings show that the accident risks,lubrication condition,and remaining life of water-lubricated bearings can be evaluated with the surface temperature,coefficient of friction,and wear volume monitoring.The research work on intelligent water-lubricated bearings is committed to promoting the development of green,electrified,and intelligent technologies for ship propulsion systems,which have important theoretical significance and application value.展开更多
As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as ...As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields,the studies in the field of water-lubricated bearing remain insufficient.To enhance vibration reduction performance,a fluid-saturated perforated slab is designed in this study,and via the establishment of a fluid-solid coupled vibration model,the influence law and impact levels were analyzed and verified by simulation and experiments.The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing,and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water.Additionally,the increase in fluid fraction did not enhance the damping effect,instead,it unexpectedly reduced the natural frequency of the raw material significantly.This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft,and presents the best volume fraction of the liquid phase.展开更多
The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model...The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model with consideration of the effects of turbulence, two-phase flow, and temperature on the pressure field at bearing surface is proposed here. Using this model, the Reynolds' equation and energy equation are solved in which the thermo- physical properties of the water as lubricant are taken into account. The dependency of characteristics of bearing, such as load-earrying capacity, flow rate (pumping losses ), and frictional losses, on angular velocity, conical angle, and radial eccentricities, is presented. The research results are beneficial to the improvement of the efficiency of conical bearing and the environmental protection.展开更多
With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed shi...With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed ships,water-lubricated bearings with high performance are more strictly required.However,due to the lubricating medium,water-lubricated bearings have many problems such as friction,wear,vibration,noise,etc.This review focuses on the performance of marine water-lubricated bearings and their failure prevention mechanism.Furthermore,the research of marine water-lubricated bearings is reviewed by discussing its lubrication principle,test technology,friction and wear mechanism,and friction noise generation mechanism.The performance enhancement methods have been overviewed from structure optimization and material modification.Finally,the potential problems and the perspective of water-lubricated bearings are given in detail.展开更多
Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as...Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as well as the low viscosity and poor load-carrying capacity of water,resulting in poor lubricating film integrity and short material service life under low-speed,heavy-load,start-stop conditions,which limits its application.To study the relationship between wettability and lubrication state and improve the lubrication performance of Si_(3)N_(4) under water lubrication conditions,the characteristic parameters that determine the hydrophilicity of Sphagnum were detected and extracted,and the bionic Si_(3)N_(4) model was established using Material Studio.Then,the molecular dynamic behavior and tribological properties of different Si_(3)N_(4) models were simulated and analyzed.Pore structure affects the spreading and storage of water on the material surface and changes the wettability of the material.Under the condition of water lubrication,better wettability and water storage promote the formation of water film,effectively improve the lubrication state of the material,and improve its bearing performance.展开更多
The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destr...The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destructive monitoring technology,but polymer materials are characterized by viscoelasticity,heterogeneity,and large acoustic attenuation,making it challenging to extract ultrasonic echo signals.Therefore,this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic reflection coefficient.The effects of bearing parameters,objective function,and algorithm parameters on the identification results are simulated and analyzed.Taking the correlation coefficient and root mean square error as the matching parameters,the thickness,sound velocity,density,and attenuation factor of the bearing are inversed simultaneously by utilizing the differential evolution algorithm(DEA),and the wear measurement system is constructed.In order to verify the identification accuracy of this method,an accelerated wear test under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-etherketone(PEEK)fixed pad and stainless-steel thrust collar as the object.The thickness of pad was measured using the high-precision spiral micrometer and ultrasonic testing system,respectively.Ultimately,the results demonstrate that the thickness identification error of this method is approximately 1%,and in-situ monitoring ability will be realized in the future,which is of great significance to the life prediction of bearings.展开更多
The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During ...The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During the hydrodynamic modelling,the coupling hydrodynamic pressure between the journal bearing and the thrust bearing is considered.The mixed lubrication performances of the microgroove journal-thrust bearing with five different bottom shapes,including rectangle,semi-ellipse,right triangle,isosceles triangle and left triangle,are compared.Based on the numerical results,the optimal microgroove bottom shape of the journal bearing and tilting angle of the thrust pad are determined.Additionally,the comparative analysis shows that the coupled bearing with left triangle microgroove bottom shape exhibits the optimal mixed lubrication performance.The numerical result also indicates that the optimal inclination angle of the thrust bearing pad is 0.01°for the current simulation case.展开更多
Polymers are widely used in bearing applications.In the case of water-lubricated stern tube bearings,thermoplastic polyurethane(TPU)-based composites are used due to their excellent wear resistance,corrosion resistanc...Polymers are widely used in bearing applications.In the case of water-lubricated stern tube bearings,thermoplastic polyurethane(TPU)-based composites are used due to their excellent wear resistance,corrosion resistance,and tunable mechanical properties.Their tribological performance,however,depends on operating conditions.In this work,TPU was blended with carbon fiber,graphene platelet,and ultra-high molecular weight polyethylene(UHMWPE).Friction tests of TPU based-composites against copper countersurface were carried out in water to mimic the actual operating conditions of the bearing.Most of the resulting contacts were in the boundary lubrication regime,in which friction was attributed to both contact mechanics of asperities as well as water lubrication.Our results show that the viscoelasticity of TPU has a considerable impact on its tribological performance.Water lubrication at 50°C promotes the softening of polymer surface material during sliding,resulting in higher fluctuation in the coefficient of friction and wear loss.This is attributed to the reduced thermomechanical properties.In addition,Schallamach waviness is observed on worn surface.The tribological properties of TPU are significantly improved by the inclusion of carbon fiber,graphene platelet,and UHMWPE.The formation of graphene transfer-layers and UHMWPE transfer film reduces friction and wear loss,while the inclusion of carbon fiber enhances wear resistance due to improved mechanical properties and load bearing capacity.展开更多
The shaft mechanical face seal in a high-speed turbopump of a liquid rocket engine often operates under extremely harsh conditions.For example,a low-temperature and low-viscosity fluid(such as liquid oxygen or liquid ...The shaft mechanical face seal in a high-speed turbopump of a liquid rocket engine often operates under extremely harsh conditions.For example,a low-temperature and low-viscosity fluid(such as liquid oxygen or liquid hydrogen)is used as a lubricant.The performance of the seal rings,especially the friction and wear behavior,directly determines whether the seal functions normal.In this study,the friction and wear behavior of several ring materials are tested using a pin-on-disk tribo-tester,and the wear morphology of the ring is investigated.The friction coefficients(COFs)and mass-wear rates under dry-friction and water-lubricated conditions,which are used to simulate low-viscosity conditions,are obtained.The results show that at a pressure-velocity(PV)value of 2.4 MPa-(m/s),the COF between the copper graphite(stator)and copper-chrome alloy disk(rotor)is low(with a value of 0.18)under the dry-friction conditions,and the 5-min wear mass of the copper graphite is approximately 2 mg.Under the water-lubricated conditions,compared with other materials(such as copper-chrome alloy,S07 steel,alumina ceramic coating,and nickel-based calcium fluoride),the S07 steel with a diamond-like carbon film is preferred for use in a high-speed turbopump under extreme conditions.The results of this study can provide theoretical and experimental guidance in the design of mechanical face seals in liquid rocket engines.展开更多
In this work, pure nickel and Ni-based nanocomposite coatings (Ni-AI2O3, Ni-SiC and Ni-ZrO2) were pro- duced on steel substrate by using pulse electrodeposition technique. The industrial performance tests were condu...In this work, pure nickel and Ni-based nanocomposite coatings (Ni-AI2O3, Ni-SiC and Ni-ZrO2) were pro- duced on steel substrate by using pulse electrodeposition technique. The industrial performance tests were conducted to evaluate the wear resistance, corrosion resistance, adhesion strength and wettability behaviour of newly developed coat- ings. Rolling contact ball-on-disc tribometer was used to assess anti-wear behaviour of these coatings under water- lubricated contacts. The results showed that the wear- and corrosion resistance properties of nickel alumina and Ni-SiC composite coatings significantly improved than that of pure Ni and Ni-ZrO2 coatings. The adhesion and wettability results of Ni-A1203 composite showed better performance when compared to the rest of the coatings. The effects of incorporating nanoparticles on the surface microstructure, interface adhesion and distribution of the particles were also investigated. The coatings were characterized by using scanning electron microscopy, X-ray diffraction analysis and 3D white light inter- ferometry. The wear failure behaviour of these coatings was further examined by post-test surface observation under optical microscope.展开更多
Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the populariz...Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the popularization and application of water-lubricated bearings.Learning from nature,the phenomenon of low friction and wear in nature has aroused great interest of scientists,and a lot of research has been carried out from mechanism analysis to bionic application.In this review,our purpose is to provide guiding methods and analysis basis for the bionic design and theoretical research of anti-friction and anti-wear of water-lubricated bearings.The development of water-lubricated bearing materials are described.Some typical examples of natural friction reduction and drag reduction are introduced in detail,and several representative preparation methods are listed.Finally,the application status of bionic tribology in water-lubricated bearings is summarized,and the future development direction of water-lubricated bearings is prospected.展开更多
Based on the energy flow theory of nonlinear dynamical system,the stabilities,bifurcations,possible periodical/chaotic motions of nonlinear water-lubricated bearing-shaft coupled systems are investigated in this paper...Based on the energy flow theory of nonlinear dynamical system,the stabilities,bifurcations,possible periodical/chaotic motions of nonlinear water-lubricated bearing-shaft coupled systems are investigated in this paper.It is revealed that the energy flow characteristics around the equlibrium point of system behaving in the three types with different friction-para-mters.(a)Energy flow matrix has two negative and one positive energy flow factors,constructing an attractive local zero-energy flow surface,in which free vibrations by initial disturbances show damped modulated oscillations with the system tending its equlibrium state,while forced vibrations by external forces show stable oscillations,(b)Energy flow matrix has one negative and two positive energy flow factors,spaning a divergence local zero-energy flow surface,so that the both free and forced vibrations are divergence oscillations with the system being unstable,(c)Energy flow matrix has a zero-energy flow factor and two opposite factors,which constructes a local zero-energy flow surface dividing the local phase space into stable,unstable and central subspace,and the simulation shows friction self-induced unstable vibrations for both free and forced cases.For a set of friction parameters,the system behaves a periodical oscillation,where the bearing motion tends zero and the shaft motion reaches a stable limit circle in phase space with the instant energy flow tending a constant and the time averaged one tending zero.Numerical simulations have not found any possible chaotic motions of the system.It is discovered that the damping matrices of cases(a),(b)and(c)respectively have positive,negative and zero diagonal elements,resulting in the different dynamic behavour of system,which gives a giderline to design the water-lubricated bearing unit with expected performance by adjusting the friction parameters for applications.展开更多
The paper studies the anti-eccentric load margin of a novel structure bearing lubricated by low viscosity medium. The lubrication dynamic model considering journal inclination angle is established. The effects of diff...The paper studies the anti-eccentric load margin of a novel structure bearing lubricated by low viscosity medium. The lubrication dynamic model considering journal inclination angle is established. The effects of different speeds, loads, and tilted angles on the interface attributes of the bearing under typical working conditions are studied. The results show that the special structure bearing has self-stability margin of anti-tilted and anti-eccentric load. Particularly under different speed conditions, analyses show that the eccentric load has little influence on the static/dynamic characteristics of the bearing. Under the same conditions, the stability margin of the bearing is higher than that of traditional bearings. The research provides a theoretical basis for the application of such kinds of special structure bearings.展开更多
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金Project supported bythe National Natural Science Foundation of China (50275093)
文摘Carbon fibers (CFs) were surface treated with air-oxidation, rare earths (RE) after air-oxidation, and rare earths, respectively. Erichsen test was conducted to study the interfacial adhesion of PTFE composites filled with carbon fibers treated with different treatment methods. Tribological properties of the PTFE composites, sliding against GCr15 steel under water-lubricated condition, were investigated on a reciprocating ball-on-disk UMT-2MT tribometer. The worn surfaces of the composites were examined using scanning electron microscopy. Experimental results reveal that RE treatment is superior to air oxidation in promoting tribological properties of CF reinforced PTFE (CF/PTFE) composite. The friction and wear properties of PTFE composite filled with RE treated CF are the best of the PTFE composites. RE treatment is more effective than air oxidation to improve the tribological properties of CF/PTFE composite owing to the effective improvement of interfacial adhesion between carbon fibers and PTFE matrix.
基金Supported by the National Natural Science Foundation of China(Grant No.52171319).
文摘Water-lubrication bearings are critical components in ship operation.However,studies on their maintenance and failure detection are highly limited.The use of sensors to continually monitor the working operation of bearings is a potential approach to solve this problem,which is collectively called intelligent bearings.In this literature review,the recent progress of electrical resistance strain gauges,Fiber Bragg grating,triboelectric nanogenerators,piezoelectric nanogenerators,and thermoelectric sensors for in-situ monitoring is summarized.Future research and design concepts on intelligent water-lubrication bearings are also comprehensively discussed.The findings show that the accident risks,lubrication condition,and remaining life of water-lubricated bearings can be evaluated with the surface temperature,coefficient of friction,and wear volume monitoring.The research work on intelligent water-lubricated bearings is committed to promoting the development of green,electrified,and intelligent technologies for ship propulsion systems,which have important theoretical significance and application value.
基金Supported by State Key Program Grant of National Natural Science Foundation of China(Grant No.51579198)Key Laboratory of High Performance Ship Technology Opening Foundation(Grant No.2016gxnc04).
文摘As the first link element for the transmission of shaft vibration to the pedestal and even to the hull,water-lubricated bearing plays a key role in suppressing vibration.Although the porous structure is considered as one of the main methods for improving the wideband vibration and noise reduction performance of materials in many industrial fields,the studies in the field of water-lubricated bearing remain insufficient.To enhance vibration reduction performance,a fluid-saturated perforated slab is designed in this study,and via the establishment of a fluid-solid coupled vibration model,the influence law and impact levels were analyzed and verified by simulation and experiments.The results obtained verified that the total vibration amplitude of damping-enhanced stern bearing in the vertical direction was smaller than that of the normal stern bearing,and the reduction amplitude of the characteristic frequency agreed with the optimal value at approximately 0.1 of the volume fraction of the liquid phase when the solid-fluid phase was rubber–water.Additionally,the increase in fluid fraction did not enhance the damping effect,instead,it unexpectedly reduced the natural frequency of the raw material significantly.This research indicates that the design of the fluid-saturated perforated slab is effective in reducing the transmission of the vibration amplitude from the shaft,and presents the best volume fraction of the liquid phase.
基金Natural Science Foundation of Heilongjiang Province of China (No.LC2009C05)
文摘The water-lubricated conical bearing has attracted attentions of researchers for its simple structure, easily adjusted gap (fdm thickness ), lower friction loss, and less pollution in application. A mathematic model with consideration of the effects of turbulence, two-phase flow, and temperature on the pressure field at bearing surface is proposed here. Using this model, the Reynolds' equation and energy equation are solved in which the thermo- physical properties of the water as lubricant are taken into account. The dependency of characteristics of bearing, such as load-earrying capacity, flow rate (pumping losses ), and frictional losses, on angular velocity, conical angle, and radial eccentricities, is presented. The research results are beneficial to the improvement of the efficiency of conical bearing and the environmental protection.
基金financially supported by the National Key R&D Program of China(No.2018YFE0197600)National Natural Science Foundation of China(No.52071244).
文摘With the development of green tribology in the shipping industry,the application of water lubrication gradually replaces oil lubrication in stern bearings and thrust bearings.In terms of large-scale and high-speed ships,water-lubricated bearings with high performance are more strictly required.However,due to the lubricating medium,water-lubricated bearings have many problems such as friction,wear,vibration,noise,etc.This review focuses on the performance of marine water-lubricated bearings and their failure prevention mechanism.Furthermore,the research of marine water-lubricated bearings is reviewed by discussing its lubrication principle,test technology,friction and wear mechanism,and friction noise generation mechanism.The performance enhancement methods have been overviewed from structure optimization and material modification.Finally,the potential problems and the perspective of water-lubricated bearings are given in detail.
基金The authors would like to express their sincere gratitude to the National Natural Science Foundation of China(Grant no.52171319).
文摘Water-lubricated bearings have great advantages in the application of ship tail bearings due to the characteristics of green,pollution-free,and sustainable.However,the poor wettability of water-lubricated materials,as well as the low viscosity and poor load-carrying capacity of water,resulting in poor lubricating film integrity and short material service life under low-speed,heavy-load,start-stop conditions,which limits its application.To study the relationship between wettability and lubrication state and improve the lubrication performance of Si_(3)N_(4) under water lubrication conditions,the characteristic parameters that determine the hydrophilicity of Sphagnum were detected and extracted,and the bionic Si_(3)N_(4) model was established using Material Studio.Then,the molecular dynamic behavior and tribological properties of different Si_(3)N_(4) models were simulated and analyzed.Pore structure affects the spreading and storage of water on the material surface and changes the wettability of the material.Under the condition of water lubrication,better wettability and water storage promote the formation of water film,effectively improve the lubrication state of the material,and improve its bearing performance.
基金supported by the National Key R&D Program of China(No.2018YFE0197600)European Union’s Horizon 2020 Research and Innovation Programme RISE under Grant Agreement No.823759(REMESH)the National Natural Science Foundation of China(No.52071244).
文摘The water-lubricated thrust bearings of the marine rim-driven thruster(RDT)are usually composed of polymer composites,which are prone to serious wear under harsh working conditions.Ultrasonic is an excellent non-destructive monitoring technology,but polymer materials are characterized by viscoelasticity,heterogeneity,and large acoustic attenuation,making it challenging to extract ultrasonic echo signals.Therefore,this paper proposes a wear monitoring method based on the amplitude spectrum of the ultrasonic reflection coefficient.The effects of bearing parameters,objective function,and algorithm parameters on the identification results are simulated and analyzed.Taking the correlation coefficient and root mean square error as the matching parameters,the thickness,sound velocity,density,and attenuation factor of the bearing are inversed simultaneously by utilizing the differential evolution algorithm(DEA),and the wear measurement system is constructed.In order to verify the identification accuracy of this method,an accelerated wear test under heavy load was executed on a multi-functional vertical water lubrication test rig with poly-ether-etherketone(PEEK)fixed pad and stainless-steel thrust collar as the object.The thickness of pad was measured using the high-precision spiral micrometer and ultrasonic testing system,respectively.Ultimately,the results demonstrate that the thickness identification error of this method is approximately 1%,and in-situ monitoring ability will be realized in the future,which is of great significance to the life prediction of bearings.
基金Project(51975064)supported by the National Natural Science Foundation of ChinaProject(cstc2018jcyj AX0442)supported by the General Projects of Basic Science and Frontier Technology Research of Chongqing,China+2 种基金Projects(2018M631059,2019T120805)supported by the Postdoctoral Science Foundation of ChinaProject(cstc2017zdcyzdzx X0001)supported by the Major Research and Development Program of ChinaProject supported by the Innovation Program on the Common and Key Technologise of Key Industries,China。
文摘The purpose of the present study is to establish a mixed lubrication model for the journal-thrust coupled microgroove bearings(also referred as coupled bearings)used for the ship shaftless rim-driven thrusters.During the hydrodynamic modelling,the coupling hydrodynamic pressure between the journal bearing and the thrust bearing is considered.The mixed lubrication performances of the microgroove journal-thrust bearing with five different bottom shapes,including rectangle,semi-ellipse,right triangle,isosceles triangle and left triangle,are compared.Based on the numerical results,the optimal microgroove bottom shape of the journal bearing and tilting angle of the thrust pad are determined.Additionally,the comparative analysis shows that the coupled bearing with left triangle microgroove bottom shape exhibits the optimal mixed lubrication performance.The numerical result also indicates that the optimal inclination angle of the thrust bearing pad is 0.01°for the current simulation case.
基金supported by the National Natural Science Foundation of China(Grant No.52275209).
文摘Polymers are widely used in bearing applications.In the case of water-lubricated stern tube bearings,thermoplastic polyurethane(TPU)-based composites are used due to their excellent wear resistance,corrosion resistance,and tunable mechanical properties.Their tribological performance,however,depends on operating conditions.In this work,TPU was blended with carbon fiber,graphene platelet,and ultra-high molecular weight polyethylene(UHMWPE).Friction tests of TPU based-composites against copper countersurface were carried out in water to mimic the actual operating conditions of the bearing.Most of the resulting contacts were in the boundary lubrication regime,in which friction was attributed to both contact mechanics of asperities as well as water lubrication.Our results show that the viscoelasticity of TPU has a considerable impact on its tribological performance.Water lubrication at 50°C promotes the softening of polymer surface material during sliding,resulting in higher fluctuation in the coefficient of friction and wear loss.This is attributed to the reduced thermomechanical properties.In addition,Schallamach waviness is observed on worn surface.The tribological properties of TPU are significantly improved by the inclusion of carbon fiber,graphene platelet,and UHMWPE.The formation of graphene transfer-layers and UHMWPE transfer film reduces friction and wear loss,while the inclusion of carbon fiber enhances wear resistance due to improved mechanical properties and load bearing capacity.
基金supported by the National Natural Science Foundation of China(No.51575418)the Natural Science Foundation of Shaanxi Province of China(No.2019JM-034).
文摘The shaft mechanical face seal in a high-speed turbopump of a liquid rocket engine often operates under extremely harsh conditions.For example,a low-temperature and low-viscosity fluid(such as liquid oxygen or liquid hydrogen)is used as a lubricant.The performance of the seal rings,especially the friction and wear behavior,directly determines whether the seal functions normal.In this study,the friction and wear behavior of several ring materials are tested using a pin-on-disk tribo-tester,and the wear morphology of the ring is investigated.The friction coefficients(COFs)and mass-wear rates under dry-friction and water-lubricated conditions,which are used to simulate low-viscosity conditions,are obtained.The results show that at a pressure-velocity(PV)value of 2.4 MPa-(m/s),the COF between the copper graphite(stator)and copper-chrome alloy disk(rotor)is low(with a value of 0.18)under the dry-friction conditions,and the 5-min wear mass of the copper graphite is approximately 2 mg.Under the water-lubricated conditions,compared with other materials(such as copper-chrome alloy,S07 steel,alumina ceramic coating,and nickel-based calcium fluoride),the S07 steel with a diamond-like carbon film is preferred for use in a high-speed turbopump under extreme conditions.The results of this study can provide theoretical and experimental guidance in the design of mechanical face seals in liquid rocket engines.
基金Schaeffler Technologies GmbH & Co.KG(Germany)and Bournemouth University(UK) for financial and in-kind support
文摘In this work, pure nickel and Ni-based nanocomposite coatings (Ni-AI2O3, Ni-SiC and Ni-ZrO2) were pro- duced on steel substrate by using pulse electrodeposition technique. The industrial performance tests were conducted to evaluate the wear resistance, corrosion resistance, adhesion strength and wettability behaviour of newly developed coat- ings. Rolling contact ball-on-disc tribometer was used to assess anti-wear behaviour of these coatings under water- lubricated contacts. The results showed that the wear- and corrosion resistance properties of nickel alumina and Ni-SiC composite coatings significantly improved than that of pure Ni and Ni-ZrO2 coatings. The adhesion and wettability results of Ni-A1203 composite showed better performance when compared to the rest of the coatings. The effects of incorporating nanoparticles on the surface microstructure, interface adhesion and distribution of the particles were also investigated. The coatings were characterized by using scanning electron microscopy, X-ray diffraction analysis and 3D white light inter- ferometry. The wear failure behaviour of these coatings was further examined by post-test surface observation under optical microscope.
基金the National Natural Science Foundation of China(Grant no.52171319).
文摘Water-lubricated bearing has become the development trend in the future because of its economy and environmental friendliness.The poor friction performance under low speed and heavy load seriously limits the popularization and application of water-lubricated bearings.Learning from nature,the phenomenon of low friction and wear in nature has aroused great interest of scientists,and a lot of research has been carried out from mechanism analysis to bionic application.In this review,our purpose is to provide guiding methods and analysis basis for the bionic design and theoretical research of anti-friction and anti-wear of water-lubricated bearings.The development of water-lubricated bearing materials are described.Some typical examples of natural friction reduction and drag reduction are introduced in detail,and several representative preparation methods are listed.Finally,the application status of bionic tribology in water-lubricated bearings is summarized,and the future development direction of water-lubricated bearings is prospected.
基金We gratefully acknowledge NSFC(51509194)CSC for providing finacial support eanabling Li Qin and Hongling Qin to visit the University of Southampton to engage the related research.
文摘Based on the energy flow theory of nonlinear dynamical system,the stabilities,bifurcations,possible periodical/chaotic motions of nonlinear water-lubricated bearing-shaft coupled systems are investigated in this paper.It is revealed that the energy flow characteristics around the equlibrium point of system behaving in the three types with different friction-para-mters.(a)Energy flow matrix has two negative and one positive energy flow factors,constructing an attractive local zero-energy flow surface,in which free vibrations by initial disturbances show damped modulated oscillations with the system tending its equlibrium state,while forced vibrations by external forces show stable oscillations,(b)Energy flow matrix has one negative and two positive energy flow factors,spaning a divergence local zero-energy flow surface,so that the both free and forced vibrations are divergence oscillations with the system being unstable,(c)Energy flow matrix has a zero-energy flow factor and two opposite factors,which constructes a local zero-energy flow surface dividing the local phase space into stable,unstable and central subspace,and the simulation shows friction self-induced unstable vibrations for both free and forced cases.For a set of friction parameters,the system behaves a periodical oscillation,where the bearing motion tends zero and the shaft motion reaches a stable limit circle in phase space with the instant energy flow tending a constant and the time averaged one tending zero.Numerical simulations have not found any possible chaotic motions of the system.It is discovered that the damping matrices of cases(a),(b)and(c)respectively have positive,negative and zero diagonal elements,resulting in the different dynamic behavour of system,which gives a giderline to design the water-lubricated bearing unit with expected performance by adjusting the friction parameters for applications.
基金supported by the National Natural Science Foundation of China (Grant No. 52105205)Natural Science Basic Research Program of Shaanxi (Grant No. 2022JM-003)+2 种基金Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515010864)the 2021 Joint Projects between Chinese and CEECs’ Universities (Grant No. 2021101)the Fundamental Research Funds for the Central Universities (Grant No.D5000220095)。
文摘The paper studies the anti-eccentric load margin of a novel structure bearing lubricated by low viscosity medium. The lubrication dynamic model considering journal inclination angle is established. The effects of different speeds, loads, and tilted angles on the interface attributes of the bearing under typical working conditions are studied. The results show that the special structure bearing has self-stability margin of anti-tilted and anti-eccentric load. Particularly under different speed conditions, analyses show that the eccentric load has little influence on the static/dynamic characteristics of the bearing. Under the same conditions, the stability margin of the bearing is higher than that of traditional bearings. The research provides a theoretical basis for the application of such kinds of special structure bearings.