Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic fil...Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic film mulching plus bunch planting had a significant promoting effect on root growth and development and yield of foxtail millet. Compared with the CK, the total root length, total surface area, total root volume and number of. root tips increased by 51.30%, 47.89%, 48.39% and 41.63%, respectively. The yield increased by 48.57%, and there was significant positive correlation between root length, total surface area, total volume, number of root tips and dry matter weight of roots with yield. Developed roots are the main reason for the yield increasing effect of water-permeability plastic film mulching plus bunch planting.展开更多
Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane fo...Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.展开更多
The B-cell lymphoma 2 (Bcl2) family of proteins participates in cell death or survival through a mitochondrial pathway. The pro-apoptotic members of the Bcl2 family such as Bim, Bid, Bax and Bak trigger cell death b...The B-cell lymphoma 2 (Bcl2) family of proteins participates in cell death or survival through a mitochondrial pathway. The pro-apoptotic members of the Bcl2 family such as Bim, Bid, Bax and Bak trigger cell death by contributing to the enhancement of mitochondrial outer membrane permeabil- ity to pro-apoptotic factors such as cytochrome c, with the subsequent activation of caspases. The anti-apoptotic mem- bers, such as B-cell lymphoma-extra large (Bd-xL), block the pro-apoptotic Bcl2 members and prevent cell death. Bcl-xL is abundantly expressed during development and in mature neurons, suggesting that it plays a role in protection from death from untoward events occurring in adult life such as ischemia, inflammation or trauma. When these neurotoxic in- sults occur, Bcl-xL translocates to mitochondria and prevents activation and homo-oligomerization of pro-apoptotic family members such Bax and Bak. Numerous studies have shown pro-survival roles for Bcl-xL in adult neurons using various models; nevertheless, the role of Bcl-xL outside of the field of neuronal death, i.e., in adult neuronal growth, excitability or synaptic plasticity, has not been studied in depth.展开更多
Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and ...Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.展开更多
A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical e...A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical engineers to overcome. There are four major challenges, namely: 1) material selection and synthesis; 2) fabrication of hollow fiber membranes with an ultra- thin dense selective layer; 3) materials against plasticization; and 4) aging. In each area, we summarize the scientific accomplishments and technical difficulties.展开更多
Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency.In the context of operating membranes under high CO_(2)pres...Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency.In the context of operating membranes under high CO_(2)pressures allows increased separation productivity and reduced gas compression cost,which,however,often leads to CO_(2)induced plasticization,a key hurdle for current gas separation membranes.In this review,we reviewed the latest development of membranes with anti-plasticization resistance,potentially suited for operation under high CO_(2)feed streams.Specifically,the separation performance of polymeric membranes,inorganic membranes,and mixed matrix membranes under high CO_(2)feed pressures are discussed.Approaches to enhance CO_(2)induced plasticization of those membranes are also summarized.We conclude the recent progress of membranes for high CO_(2)pressures with perspectives and an outlook for future development.展开更多
文摘Effects of water-permeability plastic film plus bunch planting on root growth and development and yield of foxtail millet were studied by randomized block design. The results showed that water-permeability plastic film mulching plus bunch planting had a significant promoting effect on root growth and development and yield of foxtail millet. Compared with the CK, the total root length, total surface area, total root volume and number of. root tips increased by 51.30%, 47.89%, 48.39% and 41.63%, respectively. The yield increased by 48.57%, and there was significant positive correlation between root length, total surface area, total volume, number of root tips and dry matter weight of roots with yield. Developed roots are the main reason for the yield increasing effect of water-permeability plastic film mulching plus bunch planting.
基金The project supported by a fund from the National Educational Committee.
文摘Based on energy equilibrium,a new procedure called the Membrane Factor Method is devel- oped to analyze the dynamic plastic response of plates with deflections in the range where both bending mo- ments and membrane forces are important.The final deflection of a simply -supported circular rigid-plastic plate loaded by a uniformly distributed impulse is obtained.In comparison with other approximate solutions, the present results are found to be simpler and in better agreement with the corresponding experimental values reoorded by Florence.
文摘The B-cell lymphoma 2 (Bcl2) family of proteins participates in cell death or survival through a mitochondrial pathway. The pro-apoptotic members of the Bcl2 family such as Bim, Bid, Bax and Bak trigger cell death by contributing to the enhancement of mitochondrial outer membrane permeabil- ity to pro-apoptotic factors such as cytochrome c, with the subsequent activation of caspases. The anti-apoptotic mem- bers, such as B-cell lymphoma-extra large (Bd-xL), block the pro-apoptotic Bcl2 members and prevent cell death. Bcl-xL is abundantly expressed during development and in mature neurons, suggesting that it plays a role in protection from death from untoward events occurring in adult life such as ischemia, inflammation or trauma. When these neurotoxic in- sults occur, Bcl-xL translocates to mitochondria and prevents activation and homo-oligomerization of pro-apoptotic family members such Bax and Bak. Numerous studies have shown pro-survival roles for Bcl-xL in adult neurons using various models; nevertheless, the role of Bcl-xL outside of the field of neuronal death, i.e., in adult neuronal growth, excitability or synaptic plasticity, has not been studied in depth.
基金the financial support from the National Natural Science Foundation of China(No.21436009)
文摘Mixed matrix hollow fiber membranes(MMHFMs)filled with metal-organic frameworks(MOFs)have great potential for energy-efficient gas separation processes,but the major hurdle is polymer/MOFs interfacial defects and membrane plasticization.Herein,lab-synthesized MIL-53 was post-functionalized by aminosilane grafting and subsequently incorporated into Ultem-1000 polymer matrix to fabricate high performance MMHFMs.SEM,DLS,XRD and TGA were performed to characterize silane-modified MIL-53(S-MIL-53)and prepared MMHFMs.Moreover,the effect of MOFs loading was systematically investigated first;then gas separation performance of MMHFMs for pure and mixed gas was evaluated under different pressures.MMHFMs containing post-functionalized S-MIL-53 achieved remarkable gas permeation properties which was better than model predictions.Compared to pure HFMs,CO2permeance of MMHFM loaded with 15%S-MIL-53 increased by 157%accompanying with 40%increase for CO2/N2selectivity,which outperformed the MMHFM filled with naked MIL-53.The pure and mixed gas permeation measurements with elevated feed pressure indicated that incorporation of S-MIL-53 also increased the resistance against CO2plasticization.This work reveals that post-modified MOFs embedded in MMHFMs facilitate the improvement of gas separation performance and suppression of membrane plasticization.
文摘A review on the polymeric hollow fibers membranes for gas separation has been conducted. In order to deyelop high performance membranes for gas separation, there are a few technology challenges awaiting the chemical engineers to overcome. There are four major challenges, namely: 1) material selection and synthesis; 2) fabrication of hollow fiber membranes with an ultra- thin dense selective layer; 3) materials against plasticization; and 4) aging. In each area, we summarize the scientific accomplishments and technical difficulties.
基金support of the National Key Research Development Program of China(2019YFE0119200)Creative Research Groups of the National Natural Science Foundation of China(22021005)+2 种基金Liaoning Revitalization Talents Program(XLYC2007008)Fundamental Research Funds for the Central Universities(DUT20RC(3)023)Key Research and Development Projects in Shandong Province(2022CXGC010303)。
文摘Membrane separation technology provides an effective alternative to mitigate the massive carbon emission with high carbon capture productivity and efficiency.In the context of operating membranes under high CO_(2)pressures allows increased separation productivity and reduced gas compression cost,which,however,often leads to CO_(2)induced plasticization,a key hurdle for current gas separation membranes.In this review,we reviewed the latest development of membranes with anti-plasticization resistance,potentially suited for operation under high CO_(2)feed streams.Specifically,the separation performance of polymeric membranes,inorganic membranes,and mixed matrix membranes under high CO_(2)feed pressures are discussed.Approaches to enhance CO_(2)induced plasticization of those membranes are also summarized.We conclude the recent progress of membranes for high CO_(2)pressures with perspectives and an outlook for future development.