The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely ac...The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NO_(x) conversion at 150-300.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specifi c surface area of the catalyst,which provided abundant adsorption sites for NO_(x) and NH_(3).Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrifi cing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH_(3) adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH_(3)-SCR catalyst with high activity at low temperatures.展开更多
In this study, two types of reinforcing steels(conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions(ordinary Portland cement(OPC) extract...In this study, two types of reinforcing steels(conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions(ordinary Portland cement(OPC) extract and alkali-activated slag(AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various Na Cl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.展开更多
Through measuring the alkali resistance of the invert glass and the quantity of SiO 2 and TiO 2 migrating fron the glass into the solution,the influence of TiO 2 on the alkali resistance of the glass is discussed a...Through measuring the alkali resistance of the invert glass and the quantity of SiO 2 and TiO 2 migrating fron the glass into the solution,the influence of TiO 2 on the alkali resistance of the glass is discussed and its structure is also analyzed by infrared spectroscopy.It is concluded that TiO 2 has double functions for the alkali resistance of the invert glass.On the one hand ,both TiO 2 polarizing the secondary ions in glass and TiO 2 isomorphism replacement of SiO 2 make the alkali resistance of the glass decrease.On the ther hand,TiO 2 patching network and anti erosion covering help to increase the alkali resistance.展开更多
Chrame containing refractories are a kind of traditional material for the lining of alkali recovery furnaces, but the formation of hexavalent chrome compounds will give rise to detrimental effect on environment and hu...Chrame containing refractories are a kind of traditional material for the lining of alkali recovery furnaces, but the formation of hexavalent chrome compounds will give rise to detrimental effect on environment and human's health. With the gradual awakening of people's comciousness about environment protection, it is urgent to prepare environmental-friendly materials for alkali recovery jurnaces with high quality and long life. In this paper, alumina-rich MgAl2O4 spinel ( AR90 ) was used to replace chromite. The physical properties of dried (110 ℃ for 24 h) or fired (1 300 ℃ for 3 h) AR90 and chromite were studied, respectively. The alkali vapor method was used to determine the alkali resistance of the two materials. The results show that: (1) after drying at 110 ℃ for 24 h, AR90 specimens show higher apparent porosity and slightly lower bulk density than chromite specimens; after firing at 1 300 ℃ for 3 h, AR90 has significantly higher apparent porosity as well as higher bulk density; (2) after the alkali attack, the AR90 specimens sintered at 1 300 ℃ exhibit smaller strength change and much higher compressive strength than the chromite specimens; meanwhile, the permeability degree of alkali salt in chromite specimens is more serious than that in AR90 specimens, which indicates that AR90 possesses better alkali resistance.展开更多
This standard specifies the classification, techni- cal requirements, test methods, inspection rules, marking, packing, transportation and storage of alkali resistant bricks.
This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated sl...This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) and aqueous sodium silicate solution (SiO<sub>2</sub>/Na<sub>2</sub>O molar ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 mol/l revealed the best compromise between setting time and mechanical strengths of the AAB. With this sodium hydroxide concentration, the compressive and the 3-point bending tensile strength of the hardened AAB were 53.4 and 5.5 MPa respectively after 14 days. As a result of the investigation of the acid resistance, the AAB-matrix showed a very high acid resistance in comparison to ordinary Portland cement concrete. In addition, the AAB had a high frost resistance, which had been validated by the capillary suction, internal damage and freeze thaw test with a relative dynamic E-Modulus of 93% and a total amount of scaled material of 30 g/m<sup>2</sup> after 28 freeze-thaw cycles (exposure class: XF3).展开更多
The compressive strength and flexural strength with the same strength class cement mortar of the alkali-resistant glass fiber cement mortar were tested in standard and hot-water curing condition, and the damage mechan...The compressive strength and flexural strength with the same strength class cement mortar of the alkali-resistant glass fiber cement mortar were tested in standard and hot-water curing condition, and the damage mechanism of alkali-resistant glass fiber was studied. The interaction mechanisms of the chemical erosion and physical injury in different curing conditions were studied in order to summarize the damage mechanism of alkali-resistant glass fiber in cement-based materials, and chloride diffusivity coefficient and porosity of cement mortar were tested in the different curing conditions. The experimental results are that the strength of cement based materials and fiber cement slurry interface zone were closely related, and heat curing could accelerate the hydration of cement, but inevitably enlarge the defect.展开更多
1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described her...1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described here the isolation of strain ZH-1, which has the ability of high production with 1,3-propanediol, from Fenhe River in China. It was classified as a member of K. pneumoniae after the study of phenotypic, physio-logical, biochemical and phylogenetic (16S rDNA). The initial glycerol concentration, fermentation time and pH value of strain ZH-1 were determined to be 50 g·L<sup>-1</sup>, 36 h and 8.0. Under these conditions, the practical yield of 1,3-PD was 18.53 g·L<sup>-1</sup> and a molar yield (mol<sub>1,3-PD</sub> mol<sub>Glycerol</sub>-1</sup> of 1,3-propanediol to glycerol of 0.497. In addition, we found that for the strain ZH-1, the optimum grown pH was 9.0, so we can deter-mine that it is a new member of alkali-resistant strains.展开更多
In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolys...In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolysis process were studied by EDS and self-made modified Rapoport apparatus. The electrolysis expansion rates, the diffusion coefficients of the alkali metals and the corrosion rates of the composite cathode were also calculated and discussed. The results show that no matter what kind of binder is used, alkali metals have the same penetrative path in composite cathodes:firstly in pore, then in binder and finally in carbonaceous aggregates. K and Na penetrate into both binder and carbonaceous aggregates, which leads to the expansion of composite cathodes, and K has stronger penetration ability than Na. Electrolysis expansion rate of resin based composite cathode is smaller than that of pitch based composite cathodes, and so do the diffusion coefficient and corrosion rate. Resin based composite cathode has better resistance ability to the penetration of alkali metals than pith based composite cathode, and phenolic aldehyde based composite cathode exhibits the strongest resistance ability. The penetration rate, the diffusion coefficient of alkali metals in phenolic aldehyde based TiB2-C composite cathode and the corresponding corrosion rate are 4.72 mm/h, 2.24×10^-5 cm^2/s and 2.31 mm/a, respectively.展开更多
基金This work was supported by the National Key R&D Program of China(Nos.2022YFB3504100 and 2022YFB3504102)Natural National Science Foundation of China(No.22276133)+1 种基金Natural National Science Foundation of China(No.U20A20132)Natural National Science Foundation of China(No.52106180).
文摘The existence of alkali metals in fl ue gases originating from stationary sources can result in catalyst deactivation in the low-temperature selective catalytic reduction(SCR)of nitrogen oxides(NO_(x)).It is widely accepted that alkali metal poisoning causes damage to the acidic sites of catalysts.Therefore,in this study,a series of CoMn catalysts doped with heteropolyacids(HPAs)were prepared using the coprecipitation method.Among these,CoMnHPMo exhibited superior catalytic performance for SCR and over 95%NO_(x) conversion at 150-300.Moreover,it exhibited excellent catalytic activity and stability after alkali poisoning,demonstrating outstanding alkali metal resistance.The characterization indicated that HPMo increased the specifi c surface area of the catalyst,which provided abundant adsorption sites for NO_(x) and NH_(3).Comparing catalysts before and after poisoning,CoMnHPMo enhanced its alkali metal resistance by sacrifi cing Brønsted acid sites to protect its Lewis acid sites.In situ DRIFTS was used to study the reaction pathways of the catalysts.The results showed that CoMnHPMo maintained high NH_(3) adsorption capacity after K poisoning and then reacted rapidly with NO intermediates to ensure that the active sites were not covered.Consequently,SCR performance was ensured even after alkali metal poisoning.In sum-mary,this research proposed a simple method for the design of an alkali-resistant NH_(3)-SCR catalyst with high activity at low temperatures.
基金financially supported by the National Natural Science Foundation of China (Nos.51461135001 and 51678144)the Major State Basic Research Development Program of China (No.2015CB655100)+2 种基金the Natural Science Foundation of Jiangsu Province (No.BK20161420)the Industry-University Research Cooperative Innovation Fund of Jiangsu Province (No.BY2013091)the China-Japan Research Cooperative Program by Ministry of Science and Technology of China (No.2016YFE0118200)
文摘In this study, two types of reinforcing steels(conventional low-carbon steel and a novel duplex alloy steel with Cr and Mo) were exposed to chloride-contaminated extract solutions(ordinary Portland cement(OPC) extract and alkali-activated slag(AAS) extract) to investigate their pitting corrosion resistance. The results confirm that the pitting corrosion resistance of the alloy steel is much higher than that of the low-carbon steel in both extract solutions with various Na Cl concentrations. Moreover, for each type of steel, the AAS extract contributes to a higher pitting corrosion resistance compared with the OPC extract in the presence of chloride ions, likely because of the formation of flocculent precipitates on the steel surface.
文摘Through measuring the alkali resistance of the invert glass and the quantity of SiO 2 and TiO 2 migrating fron the glass into the solution,the influence of TiO 2 on the alkali resistance of the glass is discussed and its structure is also analyzed by infrared spectroscopy.It is concluded that TiO 2 has double functions for the alkali resistance of the invert glass.On the one hand ,both TiO 2 polarizing the secondary ions in glass and TiO 2 isomorphism replacement of SiO 2 make the alkali resistance of the glass decrease.On the ther hand,TiO 2 patching network and anti erosion covering help to increase the alkali resistance.
文摘Chrame containing refractories are a kind of traditional material for the lining of alkali recovery furnaces, but the formation of hexavalent chrome compounds will give rise to detrimental effect on environment and human's health. With the gradual awakening of people's comciousness about environment protection, it is urgent to prepare environmental-friendly materials for alkali recovery jurnaces with high quality and long life. In this paper, alumina-rich MgAl2O4 spinel ( AR90 ) was used to replace chromite. The physical properties of dried (110 ℃ for 24 h) or fired (1 300 ℃ for 3 h) AR90 and chromite were studied, respectively. The alkali vapor method was used to determine the alkali resistance of the two materials. The results show that: (1) after drying at 110 ℃ for 24 h, AR90 specimens show higher apparent porosity and slightly lower bulk density than chromite specimens; after firing at 1 300 ℃ for 3 h, AR90 has significantly higher apparent porosity as well as higher bulk density; (2) after the alkali attack, the AR90 specimens sintered at 1 300 ℃ exhibit smaller strength change and much higher compressive strength than the chromite specimens; meanwhile, the permeability degree of alkali salt in chromite specimens is more serious than that in AR90 specimens, which indicates that AR90 possesses better alkali resistance.
文摘This standard specifies the classification, techni- cal requirements, test methods, inspection rules, marking, packing, transportation and storage of alkali resistant bricks.
文摘This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) and aqueous sodium silicate solution (SiO<sub>2</sub>/Na<sub>2</sub>O molar ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 mol/l revealed the best compromise between setting time and mechanical strengths of the AAB. With this sodium hydroxide concentration, the compressive and the 3-point bending tensile strength of the hardened AAB were 53.4 and 5.5 MPa respectively after 14 days. As a result of the investigation of the acid resistance, the AAB-matrix showed a very high acid resistance in comparison to ordinary Portland cement concrete. In addition, the AAB had a high frost resistance, which had been validated by the capillary suction, internal damage and freeze thaw test with a relative dynamic E-Modulus of 93% and a total amount of scaled material of 30 g/m<sup>2</sup> after 28 freeze-thaw cycles (exposure class: XF3).
基金Funded by the National Natural Science Foundation of China(Nos.51009015and50872015)the Education Foundation of Liaoning Province(No.L2010038)
文摘The compressive strength and flexural strength with the same strength class cement mortar of the alkali-resistant glass fiber cement mortar were tested in standard and hot-water curing condition, and the damage mechanism of alkali-resistant glass fiber was studied. The interaction mechanisms of the chemical erosion and physical injury in different curing conditions were studied in order to summarize the damage mechanism of alkali-resistant glass fiber in cement-based materials, and chloride diffusivity coefficient and porosity of cement mortar were tested in the different curing conditions. The experimental results are that the strength of cement based materials and fiber cement slurry interface zone were closely related, and heat curing could accelerate the hydration of cement, but inevitably enlarge the defect.
文摘1,3-Propanediol is a promising renewable resource produced by microbial production. It is mainly used in many synthetic reactions, particularly applied to the polymer synthesis and cosmetics industry. We described here the isolation of strain ZH-1, which has the ability of high production with 1,3-propanediol, from Fenhe River in China. It was classified as a member of K. pneumoniae after the study of phenotypic, physio-logical, biochemical and phylogenetic (16S rDNA). The initial glycerol concentration, fermentation time and pH value of strain ZH-1 were determined to be 50 g·L<sup>-1</sup>, 36 h and 8.0. Under these conditions, the practical yield of 1,3-PD was 18.53 g·L<sup>-1</sup> and a molar yield (mol<sub>1,3-PD</sub> mol<sub>Glycerol</sub>-1</sup> of 1,3-propanediol to glycerol of 0.497. In addition, we found that for the strain ZH-1, the optimum grown pH was 9.0, so we can deter-mine that it is a new member of alkali-resistant strains.
基金Project (51304152) supported by the National Natural Science Foundation of ChinaProject (2013JQ7016) supported by the Natural Science Foundation of Shanxi Province,ChinaProject (2013JK0904) supported by Shanxi Provincial Education Department,China
文摘In electrolyte melts containing K at low temperature, the penetrative and migratory path of alkali metals (K and Na) in pitch, furan, phenolic aldehyde and epoxy based TiB2-C composite cathodes during the electrolysis process were studied by EDS and self-made modified Rapoport apparatus. The electrolysis expansion rates, the diffusion coefficients of the alkali metals and the corrosion rates of the composite cathode were also calculated and discussed. The results show that no matter what kind of binder is used, alkali metals have the same penetrative path in composite cathodes:firstly in pore, then in binder and finally in carbonaceous aggregates. K and Na penetrate into both binder and carbonaceous aggregates, which leads to the expansion of composite cathodes, and K has stronger penetration ability than Na. Electrolysis expansion rate of resin based composite cathode is smaller than that of pitch based composite cathodes, and so do the diffusion coefficient and corrosion rate. Resin based composite cathode has better resistance ability to the penetration of alkali metals than pith based composite cathode, and phenolic aldehyde based composite cathode exhibits the strongest resistance ability. The penetration rate, the diffusion coefficient of alkali metals in phenolic aldehyde based TiB2-C composite cathode and the corresponding corrosion rate are 4.72 mm/h, 2.24×10^-5 cm^2/s and 2.31 mm/a, respectively.