期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of Water-retaining Agents on Growth, Development, Yield and Quality of Soybean under Drought Stress
1
作者 Hui XIA Yan ZHANG +2 位作者 Yun HAN Shasha HU Hengbin ZHANG 《Plant Diseases and Pests》 2024年第3期34-39,共6页
[Objectives]The paper was to explore the effects of different doses of water-retaining agent on the growth and development indicators,yield and quality of soybean plants subjected to drought stress.[Methods]The effect... [Objectives]The paper was to explore the effects of different doses of water-retaining agent on the growth and development indicators,yield and quality of soybean plants subjected to drought stress.[Methods]The effects of drought stress(MDS)and drought stress with low(MDS-L),medium(MDS-M)and high doses(MDS-H)of the water-retaining agent on the growth and development indicators,root activity,MDA content,antioxidant enzyme activity,yield and quality of soybean were studied by field plot test,with the normal water supply serving as the control(CK).[Results]In response to drought stress,the plant height,stem diameter,and yield of soybean exhibited a notable decline.Additionally,the contents of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a significant reduction.Conversely,the root activity and antioxidant enzyme activity exhibited a noticeable decline,while the MDA content exhibited an increase.The application of varying doses of the water-retaining agent was found to significantly enhance soybean growth,stimulate root activity,and elevate antioxidant enzyme activity,while concurrently reducing MDA content.The observed effects were found to be dose-dependent,with the greatest effects observed at the highest dose.In comparison to MDS,the yields of soybean in the MDS-L,MDS-M,and MDS-H treatments exhibited a 18.38%,25.58%,and 46.26%increase,respectively.Additionally,the content of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a notable enhancement.[Conclusions]The application of the water-retaining agent has been demonstrated to significantly promote the growth of soybean plants under conditions of drought stress,resulting in an improvement in both the yield and the quality of the soybean crop.The recommended dosage of the water-retaining agent is 3.3 kg/667 m 2. 展开更多
关键词 SOYBEAN water-retaining agent YIELD Quality Growth and development Antioxidant enzyme activity
下载PDF
Preparation and water sorption properties of novel SiO_(2)-LiBr microcapsules for water-retaining pavement 被引量:1
2
作者 Wenjing Li Gilmore Wellio +2 位作者 Tiejun Lu Changjun Zou Yongliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期230-241,共12页
Novel SiO_(2)-LiBr microcapsules for water-retaining pavement were prepared and firstly characterized by scanning electron microscope(SEM),particle size analysis,and Fourier transform infrared spectroscopy(FT-IR).The ... Novel SiO_(2)-LiBr microcapsules for water-retaining pavement were prepared and firstly characterized by scanning electron microscope(SEM),particle size analysis,and Fourier transform infrared spectroscopy(FT-IR).The water vapor sorption and desorption of the formulated microcapsules was then experimentally studied using dynamic vapor sorption(DVS),with the results fitted to three kinds of adsorption kinetics models.In addition,the specific surface area(SSA)was also calculated based on BET theory;and the thermal performance was investigated by laser flash analysis(LFA).Experimental results show a change of 103%in mass of the microcapsule sample under 90%relative humidity(RH)at 30℃after water vapor sorption.The fitting of results indicates that the adsorption process is mainly governed by the intra-particle diffusion mechanism,followed by the pseudo-first-order adsorption process.In comparison with most conventional pavement materials,it is found that the SSA of the formulated microcapsules is much larger while the thermal conductivity is lower.The unique properties of the formulated SiO_(2)-LiBr microcapsules have significant potential to take the edge off the urban heat island effect and reduce rutting when applied to water-retaining pavement materials. 展开更多
关键词 MICROCAPSULES Water vapor sorption Thermal performance Adsorption kinetics water-retaining pavement
下载PDF
Effects of Nano-carbon Humic Acid Water-retaining Fertilizer on Citrus Growth and the Soil Bacterial Community in Citrus Field 被引量:1
3
作者 Men Shuhui Ding Fangjun +3 位作者 Zhang Hong Ke Chao Zhang Shiwei Huang Zhanbin 《Meteorological and Environmental Research》 CAS 2018年第6期84-89,共6页
[Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventi... [Objective] In order to reveal the effects of reducing the amount of novel nano-carbon humic acid water-retaining fertilizer(CSF) on soil microbial community structure and citrus growth. [Method]In this study,conventional fertilization was as the control(KC1) in Wanzhou citrus orchard of Three Gorges Reservoir area. CSF reductions by 0%(KC2),10%(KC3),20%(KC4),30%(KC5) and 40%(KC6) were used to analyze the changes of soil bacterial community structure,citrus yield and quality. [Result]The results showed that the observed species,Shannon index,Chao1 index and PD_whole_tree of KC6 were higher than those of KC1,and were the same as KC2. The abundance of Xanthomonadaceae was the highest in KC5. Compared with KC1,the Xanthomonadaceae in KC3,KC4 and KC6 was significantly decreased,and the levels of Nitrosomonadaceae and Pseudomonasaceae were higher than that of KC1 after the treatment of KC6. Sphingomonas in different reduction treatments was lower than that of KC1,but Burkholderia and Pseudomonas were significantly higher than those of KC1. It was found that the similarity among treatments was small after bacterial community similarity clustering analysis,and citrus yield increased somewhat after CSF fertilization reduction.When CSF fertilization reduced by 30%,citrus yield increased by 4. 50%. When CSF fertilization reduced by 40%,citrus yield decreased by4. 14%. After CSF fertilization,citrus quality did not change significantly in CSF conventional fertilization and reduction of 10% and 40%,while significantly decreased in 20% and 30% of fertilization reduction. [Conclusion] CSF fertilization reduction changed the diversity of soil bacterial community structure and the yield and quality of citrus. 展开更多
关键词 NANO-CARBON HUMIC acid water-retaining fertilizer(CSF) Soil bacteria Community structure Yield Quality
下载PDF
Ice-and cryogel-soil composites in water-retaining elements in embankment dams constructed in cold regions
4
作者 N. K. Vasiliev A. A. Ivanov +1 位作者 I. N. Shatalina V. V. Sokurov 《Research in Cold and Arid Regions》 CSCD 2013年第4期444-450,共7页
There are a number of serious problems connected with building and repairing water-reining elements in embankment dams in cold regions. One of them is the difficulty in finding inexpensive clay materials with the nece... There are a number of serious problems connected with building and repairing water-reining elements in embankment dams in cold regions. One of them is the difficulty in finding inexpensive clay materials with the necessary structural properties and using them in the winter. Another is the cracks that appear in the upper part of a dam when the core freezes to the banks, and leakage along the cracks threatens to desWoy the dam. Still another is the process of erosion at the bottom of the core which may occur through fissures in the rock foundation of a dam and in transport constructions. Also, the behaviour of water-retaining elements during eazthquakes is unreliable. All of these problems can be solved by using iceand cryogel-soil composites created by cryotropic gel formation (CGF). Our laboratory investigations demonstrate that the materials proposed for water-retaining elements have the necessary permeable, plastic, thermophysical, and slrength properties to solve all of these problems. Certain consmactious of water-retaining elements which may prove to be both safe and cost-effective are proposed. However, these iceand cryogel-soil composites need to be field-validated before they are used in dams and transport structures in cold regions. 展开更多
关键词 water-retaining elements trasport slructures cold regions cryogel-soil composites polyvinyl alcohol plastic properties
下载PDF
Effects of Water-Collecting and -Retaining Techniques on Photosynthetic Rates, Yield, and Water Use Efficiency of Millet Grown in a Semiarid Region 被引量:10
5
作者 WEN Xiao-xia ZHANG De-qi +2 位作者 LIAO Yun-cheng JIA Zhi-kuan JI Shu-qin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第7期1119-1128,共10页
Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drou... Field experiments were conducted in 2003 and 2004 to study the effects of plastic ridges and furrow film mulching (plastic film on sowing, as well as plastic film on flat soil and hole sowing) and chemicals (a drought resistant agent and a water- retaining agent) on growth, photosynthetic rate, yield, and water use efficiency (WUE) of spring millet (Setaria italica L.). The experimental results showed that water-collecting and -retaining techniques can effectively increase soil moisture content, the leaf photosynthetic rate and crop growth. Due to increased soil moisture under the plastic-covered ridge and furrow water-collecting in July and August, dry matter and plant height had a increase at the booting stage (late growth advantage). However, the plastic-covered flat soil and hole sowing reduced soil evaporation during early growth, the increase of dry matter and plant height appeared at the seedling stage (early growth advantage). Plastic-covered ridge and furrow sowing supplemented with chemical reagents had significant positive effects on water collection and soil moisture retention. Improvement of soil moisture resulted into the increase of the photosynthetic rate, dry matter accumulation yield and WUE. The water-collecting and -retaining techniques can improve WUE and enhance crop yield. Correlation analysis demonstrated that the photosynthetic rate under the water-collecting and -retaining techniques was significantly associated with the soil moisture, but had no significant relationship with leaf chlorophyll content. Plastic- covered ridge and furrow sowing supplemented with chemical reagents increased the yield and WUE by 114% and 8.16 kg ha-1 mm-1, respectively, compared with the control; while without the chemical reagents the yield and WUE were 95% and 7.42 kg ha-1 mm-1 higher, respectively, than those of the control. 展开更多
关键词 water use efficiency Loess Plateau of China plastic film mulch drought-resistant agent water-retaining agent
下载PDF
An Overview of Recently Developed Coupled Simulation Optimization Approaches for Reliability Based Minimum Cost Design of Water Retaining Structures
6
作者 Muqdad Al-Juboori Bithin Datta 《Open Journal of Optimization》 2018年第4期79-112,共34页
This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty... This paper reviews several recently-developed techniques for the minimum-cost optimal design of water-retaining structures (WRSs), which integrate the effects of seepage. These include the incorporation of uncertainty in heterogeneous soil parameter estimates and quantification of reliability. This review is limited to methods based on coupled simulation-optimization (S-O) models. In this context, the design of WRSs is mainly affected by hydraulic design variables such as seepage quantities, which are difficult to determine from closed-form solutions or approximation theories. An S-O model is built by integrating numerical seepage modeling responses to an optimization algorithm based on efficient surrogate models. The surrogate models (meta-models) are trained on simulated data obtained from finite element numerical code solutions. The proposed methodology is applied using several machine learning techniques and optimization solvers to optimize the design of WRS by incorporating different design variables and boundary conditions. Additionally, the effects of several scenarios of flow domain hydraulic conductivity are integrated into the S-O model. Also, reliability based optimum design concepts are incorporated in the S-O model to quantify uncertainty in seepage quantities due to uncertainty in hydraulic conductivity estimates. We can conclude that the S-O model can efficiently optimize WRS designs. The ANN, SVM, and GPR machine learning technique-based surrogate models are efficiently and expeditiously incorporated into the S-O models to imitate the numerical responses of simulations of various problems. 展开更多
关键词 Linked Simulation-Optimization water-retaining Structures Machine Learning Technique RELIABILITY BASED Optimum Design Multi-Realization OPTIMIZATION Model Heterogeneous Hydraulic Conductivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部