期刊文献+
共找到286,625篇文章
< 1 2 250 >
每页显示 20 50 100
High-throughput calculations combining machine learning to investigate the corrosion properties of binary Mg alloys 被引量:3
1
作者 Yaowei Wang Tian Xie +4 位作者 Qingli Tang Mingxu Wang Tao Ying Hong Zhu Xiaoqin Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1406-1418,共13页
Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi... Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems. 展开更多
关键词 Mg intermetallics Corrosion property HIGH-THROUGHPUT Density functional theory Machine learning
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
2
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Effects of deformation temperatures on microstructures,aging behaviors and mechanical properties of Mg-Gd-Er-Zr alloys fabricated by hard-plate rolling 被引量:1
3
作者 Ke Liu Dalong Hu +4 位作者 Feng Lou Zijian Yu Shubo Li Xian Du Wenbo Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2345-2359,共15页
In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures... In this investigation,a high-strength Mg-12Gd-1.0Er-0.5Zr(wt.%)alloy sheet was produced by hot extrusion(HE)and subsequent hard-plate rolling(HPR)at different temperatures.The results indicate that the microstructures of these final-rolled sheets are inhomogeneous,mainly including coarse deformed grains and dynamic recrystallized(DRXed)grains,and the volume fraction of these coarse deformed grains increases as the rolling temperature increases.Thus,more DRXed grains can be found in R-385℃sheet,resulting in a smaller average grain size and weaker basal texture,while the biggest grains and the highest strong basal texture are present in R-450℃sheet.Amounts of dynamic precipitation ofβphases which are mainly determined by the rolling temperature are present in these sheets,and its precipitation can consume the content of Gd solutes in the matrix.As a result,the lowest number density ofβphase in R-450℃sheet is beneficial to modify the age hardening response.Thus,the R-450℃sheet displays the best age hardening response because of a severe traditional precipitation ofβ’(more)andβH/βM(less)precipitates,resulting in a sharp improvement in strength,i.e.ultimate tensile strength(UTS)of∼518±17 MPa and yield strength(YS)of∼438±18 MPa.However,the elongation(EL)of this sheet reduces greatly,and its value is∼2.7±0.3%.By contrasting,the EL of the peak-aging R-385℃sheet keeps better,changing from∼4.9±1.2%to∼4.8±1.4%due to a novel dislocation-induced chain-like precipitate which is helpful to keep good balance between strength and ductility. 展开更多
关键词 Mg-Gd-Er-Zr sheets Age hardening response PRECIPITATES Mechanical properties
下载PDF
Pulsed current-assisted twelve-roll precision rolling deformation of SUS304 ultra-thin strips with exceptional mechanical properties 被引量:1
4
作者 Wanwan Fan Tao Wang +3 位作者 Jinxiong Hou Zhongkai Ren Qingxue Huang Guanghui Wu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期291-305,共15页
Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the ro... Innovative pulsed current-assisted multi-pass rolling tests were conducted on a 12-roll mill during the rolling deformation processing of SUS304 ultra-thin strips.The results show that in the first rolling pass,the rolling reduction rate of a conventionally rolled sample(at room temperature)is 33.8%,which can be increased to 41.5%by pulsed current-assisted rolling,enabling the formation of an ultra-thin strip with a size of 67.3μm in only one rolling pass.After three passes of pulsed current-assisted rolling,the thickness of the ultra-thin strip can be further reduced to 51.7μm.To clearly compare the effects of a pulsed current on the microstructure and mechanical response of the ultra-thin strip,ultra-thin strips with nearly the same thickness reduction were analyzed.It was found that pulsed current can reduce the degree of work-hardening of the rolled samples by promoting dislocation detachment,reducing the density of stacking faults,inhibiting martensitic phase transformation,and shortening the total length of grain boundaries.As a result,the ductility of ultra-thin strips can be effectively restored to approximately 16.3%while maintaining a high tensile strength of 1118 MPa.Therefore,pulsed current-assisted rolling deformation shows great potential for the formation of ultra-thin strips with a combination of high strength and ductility. 展开更多
关键词 pulsedcurrent-assisted SUS304 ultra-thinstrip rolling reductionrate WORK-HARDENING mechanical properties
下载PDF
Hydrothermal treatment of pearl millet grains:Effects on nutritional composition,antinutrients and flour properties 被引量:1
5
作者 P.Prashanth T.Jayasree Joshi +1 位作者 Shagolshem Mukta Singh P.Srinivasa Rao 《Grain & Oil Science and Technology》 CAS 2024年第2期87-95,共9页
Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a si... Pearl millet(Pennisetum glaucum)is one of the major millets with high nutritional properties.This crop exhibits exceptional resilience to drought and high temperatures.However,the processing of pearl millet poses a significant challenge due to its high lipid content,enzyme activity,and presence of antinutrients.Consequently,it becomes imperative to enhance the quality and prolong the shelf life of pearl millet flour by employing suitable technologies.Hydrothermal treatment in the food industry has long been seen as promising due to its potential to reduce microbial load,inactivate enzymes,and improve nutrient retention.This study aims to investigate the effects of hydrothermal treatment on the quality characteristics of pearl millet.The independent variables of the study were soaking temperature(35,45,55℃),soaking time(2,3,4 h),and steaming time(5,10,15 min).Treatment conditions had a statistically significant effect on nutrient retention.Major antinutrients like tannins and phytates were reduced by 0.99% to 5.94% and 0.36% to 6.00%,respectively,after the treatment.Lipase activity decreased significantly up to 10% with the treatment conditions.The findings of this study could potentially encourage the use of pearl millet flour in the production of various food items and promote the application of hydrothermal treatment in the field of food processing. 展开更多
关键词 Pearl millet Hydrothermal treatment Nutritional properties ANTINUTRIENTS
下载PDF
Transformation of long-period stacking ordered structures in Mg-Gd-Y-Zn alloys upon synergistic characterization of first-principles calculation and experiment and its effects on mechanical properties 被引量:1
6
作者 Mingyu Li Guangzong Zhang +4 位作者 Siqi Yin Changfeng Wang Ying Fu Chenyang Gu Renguo Guan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1867-1879,共13页
Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process... Based on experiments and first-principles calculations,the microstructures and mechanical properties of as-cast and solution treated Mg-10Gd-4Y-xZn-0.6Zr(x=0,1,2,wt.%)alloys are investigated.The transformation process of long-period stacking ordered(LPSO)structure during solidification and heat treatment and its effect on the mechanical properties of experimental alloys are discussed.Results reveal that the stacking faults and 18R LPSO phases appear in the as-cast Mg-10Gd-4Y-1Zn-0.6Zr and Mg-10Gd-4Y-2Zn-0.6Zr alloys,respectively.After solution treatment,the stacking faults and 18R LPSO phase transform into 14H LPSO phase.The Enthalpies of formation and reaction energy of 14H and 18R LPSO are calculated based on first-principles.Results show that the alloying ability of 18R is stronger than that of 14H.The reaction energies show that the 14H LPSO phase is more stable than the 18R LPSO.The elastic properties of the 14H and 18R LPSO phases are also evaluated by first-principles calculations,and the results are in good agreement with the experimental results.The precipitation of LPSO phase improves the tensile strength,yield strength and elongation of the alloy.After solution treatment,the Mg-10Gd-4Y-2Zn-0.6Zr alloy has the best mechanical properties,and its ultimate tensile strength and yield strength are 278.7 MPa and 196.4 MPa,respectively.The elongation of Mg-10Gd-4Y-2Zn-0.6Zr reaches 15.1,which is higher than that of Mg-10Gd-4Y0.6Zr alloy.The improving mechanism of elastic modulus by the LPSO phases and the influence on the alloy mechanical properties are also analyzed. 展开更多
关键词 Mg-Gd-Y-Zn alloys Long-period stacking ordered First-principles calculations ENTHALPIES Mechanical properties
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
7
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
A new insight into LPSO phase transformation and mechanical properties uniformity of large-scale Mg-Gd-Y-Zn-Zr alloy prepared by multi-pass friction stir processing 被引量:1
8
作者 Xiaohu Guan Wen Wang +7 位作者 Ting Zhang Pai Peng Qiang Liu Peng Han Ke Qiao Jun Cai Liqiang Wang Kuaishe Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期2041-2056,共16页
A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long peri... A large-scale fine-grained Mg-Gd-Y-Zn-Zr alloy plate with high strength and ductility was successfully prepared by multi-pass friction stir processing(MFSP)technology in this work.The structure of grains and long period stacking ordered(LPSO)phase were characterized,and the mechanical properties uniformity was investigated.Moreover,a quantitative relationship between the microstructure and tensile yield strength was established.The results showed that the grains in the processed zone(PZ)and interfacial zone(IZ)were refined from 50μm to 3μm and 4μm,respectively,and numerous original LPSO phases were broken.In IZ,some block-shaped 18R LPSO phases were transformed into needle-like 14H LPSO phases due to stacking faults and the short-range diffusion of solute atoms.The severe shear deformation in the form of kinetic energy caused profuse stacking fault to be generated and move rapidly,greatly increasing the transformation rate of LPSO phase.After MFSP,the ultimate tensile strength,yield strength and elongation to failure of the large-scale plate were 367 MPa,305 MPa and 18.0% respectively.Grain refinement and LPSO phase strengthening were the major strengthening mechanisms for the MFSP sample.In particularly,the strength of IZ was comparable to that of PZ because the strength contribution of the 14H LPSO phase offsets the lack of grain refinement strengthening in IZ.This result opposes the widely accepted notion that IZ is a weak region in MFSP-prepared large-scale fine-grained plate. 展开更多
关键词 Friction stir processing MULTI-PASS Mg-Gd-Y-Zn-Zr alloy LPSO phase transformation Mechanical properties
下载PDF
Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing 被引量:1
9
作者 Lei Jia Heng Cui +3 位作者 Shufeng Yang Shaomin Lü Xingfei Xie Jinglong Qu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1876-1889,共14页
We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resol... We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),and electron backscatter diffraction(EBSD).The findings reveal that annealing processing has a significant impact on diminishing residual stresses.As the annealing temperature rose from 950 to 1150℃,the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa.Moreover,the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration.Meanwhile,the annealing treatment promotes the decomposition of the Laves,accompanied by the precipitation ofμ-(Mo_(6)Co_(7))starting at 950℃ and reaching a maximum value at 1050℃.The tensile strength and plasticity of the annealing alloy at 1150℃ reached the maximum(1394 MPa,56.1%)which was 131%,200%fold than those of the as-cast alloy(1060 MPa,26.6%),but the oxidation process in the alloy was accelerated at 1150℃.The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase,along with the shape and dispersal of theγ′phase. 展开更多
关键词 GH4151 alloy annealing treatment residual stress precipitation evolution STRENGTH mechanical properties
下载PDF
Bio-Based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties 被引量:1
10
作者 Jianzhong Ma Li Ma +3 位作者 Lei Zhang Wenbo Zhang Qianqian Fan Buxing Han 《Engineering》 SCIE EI CAS CSCD 2024年第5期250-263,共14页
This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to... This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to coatings layered on leather,but could also be employed as a green alternative to petroleum-based carcinogen styrene(St).Herein,MV was copolymerized with butyl acrylate(BA)to obtain waterborne bio-based P(MV-BA)miniemulsion via miniemulsion polymerization.Subsequently,MXene nanosheets with excellent photothermal conversion performance and antibacterial properties,were introduced into the P(MV-BA)miniemulsion by ultrasonic dispersion.During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface,MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene,which prompted its full exposure to light and bacteria,exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy.In particular,when the dosage of MXene nanosheets was 1.4 wt%,the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsioncoated leather(PML)increased by about 15℃ in an outdoor environment during winter,and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100%under the simulated sunlight treatment for 30 min.Moreover,the introduction of MXene nanosheets increased the air permeability,water vapor permeability,and thermal stability of these coatings.This study provides a new insight into the preparation of novel,green,and waterborne bio-based nanocomposite coatings for leather,with desired warmth retention and antibacterial properties.It can not only realize zerocarbon heating based on sunlight in winter,reducing the use of fossil fuels and greenhouse gas emissions,but also improve ability to fight off invasion by harmful bacteria,viruses,and other microorganisms. 展开更多
关键词 MXene nanosheets VANILLIN Styrene substitute Leather coating Photothermal conversion Warmth retention Antibacterial properties
下载PDF
Toward understanding the microstructure characteristics,phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets 被引量:1
11
作者 Bo Yao Nan Kang +6 位作者 Xiangyu Li Dou Li Mohamed EL Mansori Jing Chen Haiou Yang Hua Tan Xin Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期277-294,共18页
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue... Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder. 展开更多
关键词 laser additive manufacturing(LAM) Nd-Fe-B permanent magnets numerical simulation microstructure magnetic properties
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea 被引量:1
12
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow Sea
下载PDF
Microstructure and Properties of AlCoCrFeNiTi High-Entropy Alloy Coatings Prepared by Laser Cladding 被引量:1
13
作者 Mengxian Li Zhiping Sun +1 位作者 Zhaomin Xu Zhiming Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期50-61,共12页
21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi... 21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation. 展开更多
关键词 high entropy alloy laser cladding MICROSTRUCTURE microstructure and properties
下载PDF
A Polyvinyl Alcohol/Acrylamide Hydrogel with Enhanced Mechanical Properties Promotes Full-Thickness Skin Defect Healing by Regulating Immunomodulation and Angiogenesis Through Paracrine Secretion 被引量:1
14
作者 Peng Wang Liping Qian +9 位作者 Huixin Liang Jianhao Huang Jing Jin Chunmei Xie Bin Xue Jiancheng Lai Yibo Zhang Lifeng Jiang Lan Li Qing Jiang 《Engineering》 SCIE EI CAS CSCD 2024年第6期138-151,共14页
Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and na... Hydrogel-based tissue-engineered skin has attracted increased attention due to its potential to restore the structural integrity and functionality of skin.However,the mechanical properties of hydrogel scaffolds and natural skin are substantially different.Here,we developed a polyvinyl alcohol(PVA)/acrylamide based interpenetrating network(IPN)hydrogel that was surface modified with polydopamine(PDA)and termed Dopa-gel.The Dopa-gel exhibited mechanical properties similar to native skin tissue and a superior ability to modulate paracrine functions.Furthermore,a tough scaffold with tensile resistance was fabricated using this hydrogel by three-dimensional printing.The results showed that the interpenetration of PVA,alginate,and polyacrylamide networks notably enhanced the mechanical properties of the hydrogel.Surface modification with PDA endowed the hydrogels with increased secretion of immunomodulatory and proangiogenic factors.In an in vivo model,Dopa-gel treatment accelerated wound closure,increased vascularization,and promoted a shift in macrophages from a proinflammatory M1 phenotype to a prohealing and anti-inflammatory M2 phenotype within the wound area.Mechanistically,the focal adhesion kinase(FAK)/extracellular signal-related kinase(ERK)signaling pathway may mediate the promotion of skin defect healing by increasing paracrine secretion via the Dopa-gel.Additionally,proangiogenic factors can be induced through Rho-associated kinase-2(ROCK-2)/vascular endothelial growth factor(VEGF)-mediated paracrine secretion under tensile stress conditions.Taken together,these findings suggest that the multifunctional Dopa-gel,which has good mechanical properties similar to those of native skin tissue and enhanced immunomodulatory and angiogenic properties,is a promising scaffold for skin tissue regeneration. 展开更多
关键词 Polyvinyl alcohol/acrylamide hydrogel Mechanical property enhancement Paracrine effect Skin regeneration Signaling pathways
下载PDF
Properties and Characteristics of Regolith-Based Materials for Extraterrestrial Construction
15
作者 Cheng Zhou Yuyue Gao +4 位作者 Yan Zhou Wei She Yusheng Shi Lieyun Ding Changwen Miao 《Engineering》 SCIE EI CAS CSCD 2024年第6期159-181,共23页
The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of it... The construction of extraterrestrial bases has become a new goal in the active exploration of deep space.Among the construction techniques,in situ resource-based construction is one of the most promising because of its good sustainability and acceptable economic cost,triggering the development of various types of extraterrestrial construction materials.A comprehensive survey and comparison of materials from the perspective of performance was conducted to provide suggestions for material selection and optimization.Thirteen types of typical construction materials are discussed in terms of their reliability and applicability in extreme extraterrestrial environment.Mechanical,thermal and optical,and radiation-shielding properties are considered.The influencing factors and optimization methods for these properties are analyzed.From the perspective of material properties,the existing challenges lie in the comprehensive,long-term,and real characterization of regolith-based construction materials.Correspondingly,the suggested future directions include the application of high-throughput characterization methods,accelerated durability tests,and conducting extraterrestrial experiments. 展开更多
关键词 Extraterrestrial construction Characterization Mechanical property Thermal property Optical property Radiation-shielding
下载PDF
Physical,mechanical and thermal properties of vacuum sintered HUST-1 lunar regolith simulant
16
作者 Wenbin Han Yan Zhou +2 位作者 Lixiong Cai Cheng Zhou Lieyun Ding 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第9期1243-1257,共15页
Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and th... Establishing a base on the Moon is one of the new goals of human lunar exploration in recent years.Sintered lunar regolith is one of the most potential building materials for lunar bases.The physical,mechanical and thermal properties of sintered lunar regolith are vital performance indices for the structural design of a lunar base and analysis of many critical mechanical and thermal issues.In this study,the HUST-1 lunar regolith simulant(HLRS)was sintered at 1030,1040,1050,1060,1070,and 1080℃.The effect of sintering temperature on the compressive strength was investigated,and the exact value of the optimum vacuum sintering temperature was determined between 1040 and 1060℃.Then,the microstructure and material composition of vacuum sintered HLRS at different temperatures were characterized.It was found that the sintering temperature has no significant effect on the mineral composition in the temperature range of 1030-1080℃.Besides,the heat capacity,thermal conductivity,and coefficient of thermal expansion(CTE)of vacuum sintered HLRS at different temperatures were investigated.Specific heat capacity of sintered samples increases with the increase of test temperature within the temperature range from-75 to 145℃.Besides,the thermal conductivity of the sintered sample is proportional to density.Finally,the two temperatures of 1040 and 1050℃were selected for a more detailed study of mechanical properties.The results showed that compressive strength of sintered sample is much higher than tensile strength.This study reveals the effects of sintering temperature on the physical,mechanical and thermal properties of vacuum sintered HLRS,and these material parameters will provide support for the construction of future lunar bases. 展开更多
关键词 Lunar base Lunar regolith simulant Vacuum sintering Physical properties Mechanical properties Thermal properties
下载PDF
Influence of Sr on microstructure evolution,mechanical and corrosion properties of extruded Mg-2Zn-0.5Ca alloy
17
作者 Junlong Qin Lili Chang Xiaojing Su 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3744-3757,共14页
Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was ... Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was investigated.The results show that Sr addition into Mg-2Zn-0.5Ca alloys produced significant grain refinement in ingots and obvious texture weakening effects in extruded bars.The ultimate compressive strength increased as the Sr content increased,while the ultimate tensile strength increased firstly and then declined with the increasing of Sr content.Electrochemical tests indicated the corrosion current density of the surface parallel to extrusion direction(ED)was much lower than that of the surface perpendicular to ED.In-vitro immersion tests demonstrated the increase in the pH of solution and weight loss of Mg-2Zn-0.5Ca-0.5Sr alloy remain the lowest during immersion tests.The best comprehensive property was obtained in Mg-2Zn-0.5Ca-0.5Sr alloy,which has the largest strength and the best corrosion resistance. 展开更多
关键词 Mg-Zn-Ca-Sr alloys EXTRUSION Microstructure Mechanical properties Corrosion properties
下载PDF
Hydration Behavior and Cementitious Properties of Calcium Carbonate-aluminate Minerals Composite
18
作者 王冲 周帅 +2 位作者 ZOU Luyao LIU Jiawen ZHENG Yalin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期126-133,共8页
The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementi... The purpose of this research is to investigate the hydration behavior and cementitious properties of the mixture of calcium carbonate and aluminate, and to explore whether it can be adopted as a new low-carbon cementitious material. The composite system of calcium carbonate and aluminate minerals is studied by measuring the component of hydration products, the hydration heat, setting time and compressive strength.The results prove that the composite system has certain cementitious properties and is feasible to prepare new low-carbon cement. 展开更多
关键词 LIMESTONE hydrated calcium carboaluminate cementitious properties mechanical properties
下载PDF
The Mechanical and Electrical Properties of the Smart Aggregate Based on the Mixed Cementitious Materials
19
作者 WANG Haifeng YAN Handong +2 位作者 XU Yuye MEI Zhen WANG Chen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1528-1533,共6页
Cement and resin were designed as mixed cementitious materials to study the smart aggregate(SA)of smart concrete.Carbon fiber(CF)and surfactant were taken into consideration to adjust the mechanical and electrical pro... Cement and resin were designed as mixed cementitious materials to study the smart aggregate(SA)of smart concrete.Carbon fiber(CF)and surfactant were taken into consideration to adjust the mechanical and electrical properties of smart aggregate(SA)in this issue.The experimental results indicate that the flexibility and mechanical properties of SA can be improved by using such mixed cementitious materials.It is shows that,although the compressive strength and flexural strength can be enhanced effectively by using resin and CF,the electrical conductivity decreases significantly,which is because the water molecules are difficult to penetrate through the mixture materials so the hydration reaction of cement can not fully carry out.However,the electrical conductivity can be improved by adding the surfactant,and the strength and mechanical electrical properties can be adjusted effectively by the surfactant. 展开更多
关键词 SURFACTANT carbon fiber electrical property mechanical property smart aggregate
下载PDF
Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
20
作者 何诗悦 刘若水 +3 位作者 刘煦婕 叶先平 王利晨 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期480-486,共7页
Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties o... Saturation magnetization,magneto-crystalline anisotropy field,and dielectric properties are closely related to microwave devices applied at different frequencies.For regulating the magnetic and dielectric properties of W-type barium ferrites,single-phase BaMe_(2)Fe_(16)O_(27)(Me=Fe,Mn,Zn,Ni,Co) with different Me ions were synthesized by the high-temperature solid-state method.The saturation magnetization(Ms) range from 47.77 emu/g to 95.34 emu/g and the magnetic anisotropy field(H_a) range from 10700.60 Oe(1 Oe=79.5775 A·m^(-1)) to 13739.57 Oe,depending on the type of cation substitution in the hexagonal lattice.The dielectric permittivity and dielectric loss decrease with increasing frequency of the AC electric field in the low-frequency region,while they almost remain constant in the high-frequency region.The charac teristics of easy regulation and preparation make it a potential candidate for use in microwave device applications. 展开更多
关键词 W-type hexaferrite Raman spectra magnetic properties dielectric properties
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部