This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of...This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.展开更多
The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to b...The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to be more effective in stopping water. Laboratory model test of water shutoff by grouting was conducted. Test results show that the diffusion length and water cutoff effect of the grout are significantly improved as the grout head is raised, due to the dilution of underground water, and it takes the grout longer than its gel time to cut off water.展开更多
This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is ...This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is developed considering the difference between soil and tunnel volume loss.Then,the effects of tunnel geometries,influence angle and volume loss on the characteristics of surface settlement are discussed.Through back analysis,a total of 103 groups of field monitoring data of surface settlement induced by shield tunnelling in sandy cobble stratum are examined to investigate the statistical characteristics of the maximum settlement,settlement trough width and volume loss.An empirical prediction is presented based on the results of back analysis.Finally,the analytical solution and empirical expression are validated by the comparisons with the results of model tests and field monitoring.Results show that the soil at ground surface has an overall dilative response for most of the shield tunnelling in sandy cobble stratum.In addition,the developed analytical solution is applicable and reasonable for surface settlement prediction.Meanwhile,the proposed empirical formula also shows good per-formance in some cases,providing an approach or a reference for engineering designers to preliminarily evaluate the surface settlement.展开更多
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51538001 and 51978019).
文摘This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.
基金Projects(41472278,41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(2652012065)supported by the Fundamental Research Funds for the Central Universities,ChinaProject supported by Beijing Higher Education Young Elite Teacher Program,China
文摘The rheological behavior of phosphoric acid-water glass grout in different mixing ratios was studied. Grout made of water glass with Baume degree of 20° and 13.4% phosphoric acid by 1:1 volume ratio is found to be more effective in stopping water. Laboratory model test of water shutoff by grouting was conducted. Test results show that the diffusion length and water cutoff effect of the grout are significantly improved as the grout head is raised, due to the dilution of underground water, and it takes the grout longer than its gel time to cut off water.
基金supported by the National Natural Science Foundation of China(Grant Nos.51538001,51978019).
文摘This paper focuses on the prediction of ground surface settlement induced by shield tunnelling in sandy cobble stratum.Based on the stochastic medium theory,an analytical solution to predict the surface settlement is developed considering the difference between soil and tunnel volume loss.Then,the effects of tunnel geometries,influence angle and volume loss on the characteristics of surface settlement are discussed.Through back analysis,a total of 103 groups of field monitoring data of surface settlement induced by shield tunnelling in sandy cobble stratum are examined to investigate the statistical characteristics of the maximum settlement,settlement trough width and volume loss.An empirical prediction is presented based on the results of back analysis.Finally,the analytical solution and empirical expression are validated by the comparisons with the results of model tests and field monitoring.Results show that the soil at ground surface has an overall dilative response for most of the shield tunnelling in sandy cobble stratum.In addition,the developed analytical solution is applicable and reasonable for surface settlement prediction.Meanwhile,the proposed empirical formula also shows good per-formance in some cases,providing an approach or a reference for engineering designers to preliminarily evaluate the surface settlement.