This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement tech...This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement technology for wide sections,and its practical application.The analysis aims to offer guidance on applying soft soil roadbed wide section reinforcement technology and enhancing the overall quality of similar projects.展开更多
A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software....A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software.The amplification of acceleration,displacement,pore water pressure,and strain response were measured while varying input accelerations and surcharge pressures.Time histories of the Kobe record of the 1995 Hanshin earthquake were used as the input seismic motion.The input acceleration was 0.05 g,0.1 g,0.15 g,and 0.2 g,and different surcharge pressures were 0.70 kPa,1.12 kPa,and 1.72 kPa with relative density of Sylhet sand fixed to 48%.The output data from the shaking table tests and the numerical analysis performed through the PLAXIS 3D software were compared,and these findings were also compared with some earlier similar studies.The acceleration amplification,displacement,pore water pressure,and strain(%)changed along the elevation of the embankment and acceleration response increased with the increase in base acceleration.The increase was more noticeable at higher elevations.These findings enrich the knowledge of predicting the dynamic behavior of wrap-faced embankments and enable the design parameters to be adjusted more accurately.展开更多
The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is deve...The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is developed.Moreover,an important conclusion that the thickness of soft subsoil affects greatly the geotechnical behavior of geosynthetic reinforced embankments is drawn.A series of embankment built on soft subsoil is calculated using the FEM program.The results of the computer program,such as the lateral displacements,settlements,and stress level and shear stresses in the subsoil,are presented in great detail and the comparison of those results disposes clearly the huge discrepancy of reinforce benefit between the thick subsoil embankment and thin subsoil embankment.Reinforcement mechanism of geosynthetics is also discussed in this paper and several conclusions are reached.This paper also gives recommendations for design.展开更多
A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or set...A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.展开更多
The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal beh...The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.展开更多
Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibil...Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibility and low permeability of soft soil,the post-construction settlement of the subgrade is extremely difficult to control in these regions,which seriously threatens the operation safety of high-speed trains.In this work,the significant issues of high-speed railway subgrades in soft soil regions are discussed.The theoretical and experimental studies on foundation treatment methods for ballasted and ballastless tracks are reviewed.The settlement evolution and the settlement control effect of different treatment methods are highlighted.Control technologies of subgrade differential settlement are subsequently briefly presented.Settlement calculation algorithms of foundations reinforced by different treatment methods are discussed in detail.The defects of existing prediction methods and the challenges faced in their practical applications are analyzed.Furthermore,the guidance on future improvement in control theories and technologies of subgrade settlement for high-speed railway lines and the corresponding challenges are provided.展开更多
In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformatio...In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.展开更多
In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summ...In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.展开更多
Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison ...Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.展开更多
Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological enviro...Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result.展开更多
The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undraine...The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies.Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil.The infl uence of sand content on fl ow characteristics is also studied in detail,and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz.Under the condition of cyclic vibration,the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle,and the increase in sand content can make the fl ow characteristics present a faster convergent tendency.展开更多
The behavior of sand drain was estimated so that the size of very large load-pressure could be eliminated by changing the configuration of the sand drain elements into sand wall.A 3D mathematical model was formulated ...The behavior of sand drain was estimated so that the size of very large load-pressure could be eliminated by changing the configuration of the sand drain elements into sand wall.A 3D mathematical model was formulated to transform the configuration of a sand drain into a sand wall to minimize or eliminate the excessive stress and primary settlement on the road base.This was barely considered in the past. According to soil mechanics theory and seepage characteristics of sand drain in road base foundations, a 3D sand drain element in FEM format was generated,and a matrix expression was formulated which was introduced into 3D Biot Consolidation展开更多
In this paper, the rupture characteristics of the overlaying soil with soft interlayer were studied by plane-strain finite element method. From the results, it can be shown that the existence of soft layer separates r...In this paper, the rupture characteristics of the overlaying soil with soft interlayer were studied by plane-strain finite element method. From the results, it can be shown that the existence of soft layer separates rupture process of the overlaying soil into two phases. The depth of a buried soft interlayer will influence the rupture process and the rupture range of the overlaying soil. The deeply buried soft interlayer would bring about a wider range of surface failure. In addition, the thickness of the soft layer also has effect on the rupture process and rupture range of the overlaying soil.展开更多
A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from t...A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters.展开更多
The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on...The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on the background of the soft soil in Shantou, Guangdong Province, a series of experimental studies on the consolidation characteristics were carried out by using the modified consolidation instrument. And the concept of the composite consolidation coefficient of the drained water body was put forward. The composite consolidation coefficient reflects the consolidation characteristics of soft soil with drainage water, The test results showed that: 1) The consolidation test with drainage plate is basically consistent with the load compression curve, but its consolidation rate is fast, which is reflected by the composite consolidation coefficient. 2) In the consolidation test of water bodies with drainage, the vertical consolidation coefficient and radial consolidation coefficient are calculated by “three-point method”, and then the composite consolidation coefficient is obtained. The composite consolidation coefficient decreases with the increase of drain spacing ratio, effective drainage diameter and drainage height, which is basically consistent with the theoretical formula. 3) The vertical consolidation coefficient and radial consolidation coefficient decrease with the increase of the diameter of the sample, and the difference is obvious when the load is large. The large-size model with a diameter of 100 mm and a height of 100 mm is about 1.35 times of the vertical consolidation coefficient of the conventional consolidation test.展开更多
The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-s...The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.展开更多
This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by...This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.展开更多
This paper describes the engineeringapplication of soil improvement in manylarge coal-fired power plants designed byEast China Electric Power Design Institute.Soil improvement technology is especiallysuitable for stre...This paper describes the engineeringapplication of soil improvement in manylarge coal-fired power plants designed byEast China Electric Power Design Institute.Soil improvement technology is especiallysuitable for strengthening soft soil. Exceptfor increasing soil bearing capacity andcontrolling soil deformation, it can also beused to eliminate loose sand liquefactionunder seismic loading, or to strengthen slopestability. The applications introduced in thispaper include dynamic consolidation,drained consolidation, stone pile, soil-cement mixed pile, jet grouting andcompacting grouting, reinforced earth, etc.The kinds of soil layer to be improvedinclude typical Shanghai soft soil, loose siltand silt sand, miscellaneous fill andhydraulic filled soil. As a result of thetreatments described in this paper, nobuilding fissures caused by soil differentialsettlement had ever occurred in the powerplants engineered by ECEPDI andconstructed in 1990s.展开更多
Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversi...Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversified construction environment,climate and geological influence in highway construction,soft soil foundation is one of the more typical geological forms.With wide distribution in our country,seen as a big difficulty,highway construction technology and directly affect the quality of highway construction,cost,if not properly handled,will cause the soft soil foundation highway engineering structure is not stable,prone to accidents in use.In this paper,we study the treatment of soft soil foundation in highway construction,and put forward some reasonable Suggestions.展开更多
文摘This article examines the soft soil roadbed reinforcement technology for widened sections of highways in a specific project.It provides an overview of the project,the principles of soft soil roadbed reinforcement technology for wide sections,and its practical application.The analysis aims to offer guidance on applying soft soil roadbed wide section reinforcement technology and enhancing the overall quality of similar projects.
文摘A wrap-faced embankment model on soft clay soil subjected to earthquake motion was investigated in this study.The study was conducted both experimentally using a shaking table and numerically using PLAXIS 3D software.The amplification of acceleration,displacement,pore water pressure,and strain response were measured while varying input accelerations and surcharge pressures.Time histories of the Kobe record of the 1995 Hanshin earthquake were used as the input seismic motion.The input acceleration was 0.05 g,0.1 g,0.15 g,and 0.2 g,and different surcharge pressures were 0.70 kPa,1.12 kPa,and 1.72 kPa with relative density of Sylhet sand fixed to 48%.The output data from the shaking table tests and the numerical analysis performed through the PLAXIS 3D software were compared,and these findings were also compared with some earlier similar studies.The acceleration amplification,displacement,pore water pressure,and strain(%)changed along the elevation of the embankment and acceleration response increased with the increase in base acceleration.The increase was more noticeable at higher elevations.These findings enrich the knowledge of predicting the dynamic behavior of wrap-faced embankments and enable the design parameters to be adjusted more accurately.
文摘The reinforcement effects of geosynthetics in thick soft subsoil case and thin soft subsoil case are studied in this paper,and a Duncan Chang nonlinear numerical model based on the finite element method (FEM) is developed.Moreover,an important conclusion that the thickness of soft subsoil affects greatly the geotechnical behavior of geosynthetic reinforced embankments is drawn.A series of embankment built on soft subsoil is calculated using the FEM program.The results of the computer program,such as the lateral displacements,settlements,and stress level and shear stresses in the subsoil,are presented in great detail and the comparison of those results disposes clearly the huge discrepancy of reinforce benefit between the thick subsoil embankment and thin subsoil embankment.Reinforcement mechanism of geosynthetics is also discussed in this paper and several conclusions are reached.This paper also gives recommendations for design.
文摘A new triaxial apparatus was designed and manufactured. It is able to applysurcharge and combined vacuum-surcharge pressures on soil samples, and allows for monitoring ofexcess pore-water pressure, axial strain or settlement, and volumetric strain during the process ofconsolidation. Tests were performed using the apparatus on undisturbed soft clayey soil samples,which were collected from Wenzhou, Zhejiang Province, China, at average natural water content 72. 5%. The consolidation behavior of theclay has no rigorous difference, whether it is consolidatedunder the vacuum, surcharge, or combined vacuum-surcharge preloading. The study shows that somephysical properties of the soft clayey soils are changed and mechanical properties are improved tosupport excessive loads transferred to the soil foundation due to construction.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK2012810)the Fundamental Research Funds for the Central Universities(Grant No.2009B15114)
文摘The motion of pore water directly influences mechanical properties of soils, which are variable during creep. Accurate description of the evolution of mechanical properties of soils can help to reveal the internal behavior of pore water. Based on the idea of using the fractional order to reflect mechanical properties of soils, a fractional creep model is proposed by introducing a variable-order fractional operator, and realized on a series of creep responses in soft soils. A comparative analysis illustrates that the evolution of mechanical properties, shown through the simulated results, exactly corresponds to the motion of pore water and the solid skeleton. This demonstrates that the proposed variable-order fractional model can be employed to characterize the evolution of mechanical properties of and the pore water motion in soft soils during creep. It is observed that the fractional order from the proposed model is related to the dissipation rate of pore water pressure.
基金National Natural Science Foundation of China(No.51778485).
文摘Construction issues of high-speed rail infrastructures have been increasingly concerned worldwide,of which the subgrade settlement in soft soil area becomes a particularly critical problem.Due to the high compressibility and low permeability of soft soil,the post-construction settlement of the subgrade is extremely difficult to control in these regions,which seriously threatens the operation safety of high-speed trains.In this work,the significant issues of high-speed railway subgrades in soft soil regions are discussed.The theoretical and experimental studies on foundation treatment methods for ballasted and ballastless tracks are reviewed.The settlement evolution and the settlement control effect of different treatment methods are highlighted.Control technologies of subgrade differential settlement are subsequently briefly presented.Settlement calculation algorithms of foundations reinforced by different treatment methods are discussed in detail.The defects of existing prediction methods and the challenges faced in their practical applications are analyzed.Furthermore,the guidance on future improvement in control theories and technologies of subgrade settlement for high-speed railway lines and the corresponding challenges are provided.
基金the Educational Department of Liaoning Province Through Scientific Research Project(20060051)National Natural Science Foundation of China(50604009)Universities Excellent Talents Support Plan to Train Foundation of Liaoning(RC-04-13)
文摘In view of the characteristics of soft soil deep foundation pit for the construction and geotechnical characteristics of the special medium,it is difficult to calculate theoreti- cally accurately structural deformation of the foundation pit,so in the course of excavation on the construction of the information is particularly important.The analysis and compari- son of several popular non-linear forecasting methods,combined with the actual projects, set up a grey theoretical prediction model,time series forecasting model,improved neural network model to predict deformation of the foundation pit.The results show that the use of neural network to predict with high accuracy solution,it is the foundation deformation prediction effective way in underground works with good prospects.
基金funded by the China Postdoctoral Science Foundation(No. 2014M551909)the Jiangsu Geology & Mineral Exploration Bureau’s Science Foundation(No.2013-KY-13)
文摘In view of the collapse of a deep excavated foundation pit of the Xianghu subway underground station in Hangzhou of China,the main features of the accident are analyzed,and the induced factors of the accident are summarized. Then,a 3-D FEM analysis model is created to demonstrate the soil-support structures interaction system,and the effect of the main factors,such as the volume replacement ratio of the bottom soil reinforcing,the asymmetric ground overload,the embedded depth of the diaphragm wall,the shear strength of the bottom soils disturbed by the construction,and the excessive excavation of the bottom soil,are analyzed and compared. The results show that the ineffective original reinforcement plan for the bottom soft soil is the most prominent factor for the accident,and the disturbance effect of the deep excavation on the shear strength of the bottom soft soil is another significant factor for the accident. Meanwhile,if the reinforcement of the bottom soft soil is canceled,an appropriate extension of the diaphragm retaining walls to the under lying harder soil layer can also effectively prevent the collapse of the deep excavated foundation pit. In addition,the partly excessive excavation in the process has a great influence on the axial force of the most nearby horizontal support but few effect on the stability of the diaphragm wall. Thus,the excessive excavation of the bottom soils should not be the direct inducing factor for the accident. To the asymmetric ground overload,it should be the main factor inducing the different damage conditions of the diaphragm walls on different sides. According to the numerical modeling and actual engineering accident condition,the development process of the accident is also identified.
基金Projects(50778181, 51178472) supported by the National Natural Science Foundation of China Project(2007045) supported by the Transportation Department of Hunan Province,China
文摘Finite element method was performed to investigate the influences of beam stiffness, foundation width and cushion thickness on the beating capacity of beam foundation on underlying weak laminated clay. The comparison between numerical results and results from field test including plate-bearing test and foundation settlement observation shows reasonable agreement. According to the numerical results, the beam width, length, cross section and cushion thickness were optimized. The results show that the stresses in subgrade soil decrease greatly with increasing the cushion thickness and width of foundation. However, the foundation settlement and influencing depth of displacement also increase correspondingly under conditions of relatively thinner cushion thickness. For the foundations on underlying weak layer, increasing foundation width merely might be inadequate for improving the bearing capacity, and the appropriate width and cushion thickness depend on the response of subgrade. A comparison between rigid and flexible beams was also discussed. The influence of a flexible beam foundation on subgrade is relatively smaller under the same loading conditions, and the flexible beam foundation appears more adaptable to various subgrades. The proposed flexible beam foundation was adopted in engineering. According to the calculation results, beam width of 2.4 m and cushion thickness of 0.8 m are proposed, and a flexible beam foundation is applied in the optimized design, which is confirmed reasonable by the actual engineering.
基金National Natural Science Foundations of China(Nos.41172236,41402243)
文摘Different criteria and factors are used in different methods of soft soil foundation settlement calculation and engineering geological zoning.The methods used are not universally suitable for complex geological environments.The post-construction settlement of soft soil foundations are especially large and difficult to calculate.In addition,there are many deficiencies in the current methods used for engineering geological zoning.Focusing on the need of establishing engineering geological zoning for areas with soft soil foundations in the Tianjin Marine Economic Area,combination weighting and extension methods were introduced.An evaluation model for the settlement of soft soil foundations was established using multiple factors and large amounts of data.This evaluation model is accurate and objective for delineating engineering geological zoning.These methods eliminate deficiencies by considering both objective and subjective factors,and help obtain an objective and accurate result.
基金Natural Science Foundation of Jiangsu Province of China under Grant No.BK2012810
文摘The flow characteristics of foundation soils subjected to train loads can present engineering hazards in highspeed railways.In order to verify the feasibility of blending coarse sand in modifying soft subsoil,undrained pulling sphere tests were carried out and the train loads were simulated through localized and cyclic vibration at various frequencies.Laboratory testing results indicate that the fl ow characteristics of soft soil can be signifi cantly enhanced by high-frequency vibration;meanwhile the continuous increase in fl ow characteristics caused by cyclic vibration may be an important reason for the long-term settlement of soft subsoil.The infl uence of sand content on fl ow characteristics is also studied in detail,and it is shown that the addition of coarse sand can weaken the fl ow characteristics of soft soil induced by sudden vibration at lower than 50 Hz.Under the condition of cyclic vibration,the growth of the fl ow characteristics of sand-clay mixtures is mainly caused by the fi rst-time vibration in the cycle,and the increase in sand content can make the fl ow characteristics present a faster convergent tendency.
文摘The behavior of sand drain was estimated so that the size of very large load-pressure could be eliminated by changing the configuration of the sand drain elements into sand wall.A 3D mathematical model was formulated to transform the configuration of a sand drain into a sand wall to minimize or eliminate the excessive stress and primary settlement on the road base.This was barely considered in the past. According to soil mechanics theory and seepage characteristics of sand drain in road base foundations, a 3D sand drain element in FEM format was generated,and a matrix expression was formulated which was introduced into 3D Biot Consolidation
基金National Natural Science Foundation of China (50078049).
文摘In this paper, the rupture characteristics of the overlaying soil with soft interlayer were studied by plane-strain finite element method. From the results, it can be shown that the existence of soft layer separates rupture process of the overlaying soil into two phases. The depth of a buried soft interlayer will influence the rupture process and the rupture range of the overlaying soil. The deeply buried soft interlayer would bring about a wider range of surface failure. In addition, the thickness of the soft layer also has effect on the rupture process and rupture range of the overlaying soil.
文摘A comparison between deep learning and standalone models in predicting the compaction parameters of soil is presented in this research.One hundred and ninety and fifty-three soil samples were randomly picked up from two hundred and forty-three soil samples to create training and validation datasets,respectively.The performance and accuracy of the models were measured by root mean square error(RMSE),coefficient of determination(R2),Pearson product-moment correlation coefficient(r),mean absolute error(MAE),variance accounted for(VAF),mean absolute percentage error(MAPE),weighted mean absolute percentage error(WMAPE),a20-index,index of scatter(IOS),and index of agreement(IOA).Comparisons between standalone models demonstrate that the model MD 29 in Gaussian process regression(GPR)and model MD 101 in support vector machine(SVM)can achieve over 96%of accuracy in predicting the optimum moisture content(OMC)and maximum dry density(MDD)of soil,and outperformed other standalone models.The comparison between deep learning models shows that the models MD 46 and MD 146 in long short-term memory(LSTM)predict OMC and MDD with higher accuracy than ANN models.However,the LSTM models outperformed the GPR models in predicting the compaction parameters.The sensitivity analysis illustrates that fine content(FC),specific gravity(SG),and liquid limit(LL)highly influence the prediction of compaction parameters.
文摘The consolidation coefficient is the most basic parameter to calculate the consolidation rate of soil layer, and the horizontal consolidation coefficient controls the radial water flow into the drainage well. Based on the background of the soft soil in Shantou, Guangdong Province, a series of experimental studies on the consolidation characteristics were carried out by using the modified consolidation instrument. And the concept of the composite consolidation coefficient of the drained water body was put forward. The composite consolidation coefficient reflects the consolidation characteristics of soft soil with drainage water, The test results showed that: 1) The consolidation test with drainage plate is basically consistent with the load compression curve, but its consolidation rate is fast, which is reflected by the composite consolidation coefficient. 2) In the consolidation test of water bodies with drainage, the vertical consolidation coefficient and radial consolidation coefficient are calculated by “three-point method”, and then the composite consolidation coefficient is obtained. The composite consolidation coefficient decreases with the increase of drain spacing ratio, effective drainage diameter and drainage height, which is basically consistent with the theoretical formula. 3) The vertical consolidation coefficient and radial consolidation coefficient decrease with the increase of the diameter of the sample, and the difference is obvious when the load is large. The large-size model with a diameter of 100 mm and a height of 100 mm is about 1.35 times of the vertical consolidation coefficient of the conventional consolidation test.
基金supported by the Center for Innovative Grouting Materials and Technology (CIGMAT) at the University of Houston, Texas, USA
文摘The characterization of ultra-soft clayey soil exhibits extreme challenges due to low shear strength of such material.Hence,inspecting the non-destructive electrical impedance behavior of untreated and treated ultra-soft clayey soils gains more attention.Both shear strength and electrical impedance were measured experimentally for both untreated and treated ultra-soft clayey soils.The shear strength of untreated ultra-soft clayey soil reached 0.17 kPa for 10% bentonite content,while the shear strengths increased to 0.27 kPa and 6.7 kPa for 10% bentonite content treated with 2% lime and 10% polymer,respectively.The electrical impedance of the ultra-soft clayey soil has shown a significant decrease from 1.6 kΩ to 0.607 kΩ when the bentonite content increased from 2% to 10% at a frequency of 300 kHz.The10%lime and 10% polymer treatments have decreased the electrical impedances of ultra-soft clayey soil with 10%bentonite from 0.607 kΩ to 0.12 kΩ and 0.176 kΩ,respectively,at a frequency of 300 kHz.A new mathematical model has been accordingly proposed to model the non-destructive electrical impedancefrequency relationship for both untreated and treated ultra-soft clayey soils.The new model has shown a good agreement with experimental data with coefficient of determination(R;)up to 0.99 and root mean square error(RMSE) of 0.007 kΩ.
文摘This study uses Steel Slag Coarse Aggregate (SSCA) as a mixture replacement, preamble material to improve soft soils, which is economic, and has good effect environment. Recently, the development and utilization of by-product, waste and recycle materials must be studied and investigated as a source of improved material for soft soils as, an economic and good effect environmental. The study analyzes effects of both replaced mixtures, (SSCA) or (TSCA) on improved soil bearing capacity and expected settlement after verifying the model. Numerical modeling of the one of real store loaded strip using, PLAXIS, 2D, strain deformation behavior to achieve field visible and measured deformations of untreated soft soil. Numerical studies were devolved to investigate geomechanics parameters improved to compare between using (SSCA) or (TSCA) as, replacement mixture. Results demonstrate that using (SSCA) improved compressibility and strength of shallow soft soil layer significantly than using (TCSA) mixture, while (SSCA) improved strip footing ultimate bearing capacity, (UBC), by 84.4% compared with increase of 20.5% when using (TCSA) mixture at the same thickness. In addition, the study highlights the effective (SSCA) replacement thickness ranges between (0.65 ~ 0.80) footing width.
文摘This paper describes the engineeringapplication of soil improvement in manylarge coal-fired power plants designed byEast China Electric Power Design Institute.Soil improvement technology is especiallysuitable for strengthening soft soil. Exceptfor increasing soil bearing capacity andcontrolling soil deformation, it can also beused to eliminate loose sand liquefactionunder seismic loading, or to strengthen slopestability. The applications introduced in thispaper include dynamic consolidation,drained consolidation, stone pile, soil-cement mixed pile, jet grouting andcompacting grouting, reinforced earth, etc.The kinds of soil layer to be improvedinclude typical Shanghai soft soil, loose siltand silt sand, miscellaneous fill andhydraulic filled soil. As a result of thetreatments described in this paper, nobuilding fissures caused by soil differentialsettlement had ever occurred in the powerplants engineered by ECEPDI andconstructed in 1990s.
文摘Highway is an important channel to connect regional economic development,and is an indispensable part of modern transportation system.In view of the extensive nature of highway cover space and the existence of diversified construction environment,climate and geological influence in highway construction,soft soil foundation is one of the more typical geological forms.With wide distribution in our country,seen as a big difficulty,highway construction technology and directly affect the quality of highway construction,cost,if not properly handled,will cause the soft soil foundation highway engineering structure is not stable,prone to accidents in use.In this paper,we study the treatment of soft soil foundation in highway construction,and put forward some reasonable Suggestions.