Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters t...Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters the formation,resulting in widespread water-rock interaction.Deeply understanding such effects is required to optimize the production system.In this study,the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids,acid fluids,alkali fluids and oxidative fluids.It is shown that shale is generally rich in water-sensitive components such as clay minerals,acidsensitive components(like carbonate minerals),alkali-sensitive components(like quartz),oxidative-sensitive components(like organic matter and pyrite),which easily lead to change of rock fabric and mechanical properties owing to water-rock interaction.According to the results,oxidizing acid fluids and oxidizing fracturing fluids should be used to enhance shale gas recovery.This study also indicates that an aspect playing an important role in increasing cumulative gas production is the optimization of the maximum shut-in time based on the change point of the wellhead pressure drop rate.Another important influential factor to be considered is the control of the wellhead pressure considering the stress sensitivity and creep characteristics of the fracture network.展开更多
Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals l...Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes.展开更多
The subcritical crack growth and fracture toughness in peridotite, lherzolite and amphibolite were investigated with double torsion test. The results show that water-rock interaction has a significant influence on sub...The subcritical crack growth and fracture toughness in peridotite, lherzolite and amphibolite were investigated with double torsion test. The results show that water-rock interaction has a significant influence on subcritical crack growth. With water-rock interaction, the crack velocity increases, while the stress intensity factor declines, which illustrates that water-rock interaction can decrease the strength of rocks and accelerate the subcritical crack growth. Based on Charlse theory and Hilling & Charlse theory, the test data were analyzed by regression and the correlation coefficients were all higher than 0.7, which shows the correlation is significant. This illustrates that both theories can explain the results of tests very well. Therefore, it is believed that the subcritical crack growth attributes to the breaking of chemical bond, which is caused by the combined effect of the tensile stress and the chemical reaction between the material at crack tip and the corrosive agent. Meanwhile, water-rock interaction has a vital effect on fracture toughness. The fracture toughness of samples under atmospheric environment is higher than that of samples immersed in water. And water-rock interaction has larger influence on fracture toughness in amphibolite than that in peridotite and lherzolite.展开更多
Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mi...Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mine of China was investigated by combining field investigation, meteorological and hydrological survey with numerical simulation to understand its triggering mechanism and dynamic process. The field data shows that the short-term high-intensity rainfall is the most direct inducement to trigger water-rock flow in the waste dump. The loose shallow gravel soil and the V-shaped valley with a certain slope provide the necessary conditions of the occurrence of water-rock flow in the waste dump. Moreover, the possibility criterion of water-rock flow is presented by analyzing the historical rainfall data. In addition, the smoothed particle hydrodynamics(SPH) method was employed to simulate the waterrock flow under the conditions of Newtonian fluid with uniform distribution of water and coarse-grained materials. The simulating results show that the flow distance, velocity, shape, and deposition profile of water-rock flow are in good agreement with the field observation. The present work is beneficial to the risk assessment and mitigation design of water-rock flow disaster in the waste dump.展开更多
The δ18O values of vein quartz of different stages from the Yinshan ore deposit are constant around 16‰ and the calculated δ18OH2O values attain 8‰± ; the δDH2O values of fluid inclu-sions in vein quartz are...The δ18O values of vein quartz of different stages from the Yinshan ore deposit are constant around 16‰ and the calculated δ18OH2O values attain 8‰± ; the δDH2O values of fluid inclu-sions in vein quartz are constant at about-60‰. From the surface down to 1200 m below the δ18O values of altered rocks gradually decrease from 15‰± to 11‰± . Various water-rock inversion calculations indicate that the ore fluids were formed by the interaction between meteoric water and phyllite at 350℃ and the effective W/ R value of around 0.1. When the water-rock exchange in the upper mineralization system took place, the effective W / R value increased to 5.0 or more. As a result, an evolution and mineralization model of a buffered open system with two-stage water-rock interactions is proposed in this study.展开更多
In the Xihu Sag,the reservoirs of the Paleogene Huagang formation have entered the middle diagenetic stage A and the rock physical properties of the water layer are considerably more suitable for the gas migration and...In the Xihu Sag,the reservoirs of the Paleogene Huagang formation have entered the middle diagenetic stage A and the rock physical properties of the water layer are considerably more suitable for the gas migration and storage than those of the present gas layer,indicating the inversion of the physical properties.In this study,core samples were collected from the corresponding reservoir to conduct water-rock reaction experiments in acidic,alkaline,and neutral systems under the specific temperature and pressure.The reasons for the inversion of physical properties were investigated based on the experiment results in reservoir diagenetic environments.The inversion of physical properties can be attributed to the fact that the diagenetic environment around the gas-water interface controls the water-rock reaction effect.With different types of acidic substances,two different situations corresponding to inverted physical properties were analyzed along with the corresponding mechanisms.When the pore fluid is acidic,the physical properties make the overall water layer a better reservoir space than the gas layer,which can be referred to as the overall inversion of physical properties.When the fluid were generally neutral or weakly alkaline and the gas layer was rich in CO2,only the physical properties of the water layer adjacent to the gas-water interface were more favorable for the gas migration than those of the gas layer.This phenomenon can be referred to as the near-interface inversion of physical properties.展开更多
The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and trans...The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and transformation,leading to the local corrosion or blockage of reservoirs,have a significant influence on recovery.In this study,a combination of high-temperature and high-pressure laboratory experiments and coupled temperature/fluid-chemistry multifield numerical simulations are used to investigate CO_(2)-water-rock reactions under various reservoir conditions in the upper and lower ’sweet spots’,to reveal the mechanisms underlying CO_(2)-induced mineral dissolution,precipitation and transformation.In addition,we quantitatively calculated the evolution of porosity over geological timescales;compared and analyzed the variability of CO_(2) transformation in the reservoir under a variety of temperature,lithology and solution conditions;and identified the main factors controlling CO_(2)-water-rock reactions,the types of mineral transformation occurring during long-term CO_(2) sequestration and effective carbon sequestration minerals.The results demonstrate that the main minerals undergoing dissolution under the influence of supercritical CO_(2) are feldspars,while the main minerals undergoing precipitation include carbonate rock minerals,clay minerals and quartz.Feldspar minerals,especially the initially abundant plagioclase in the formation,directly affects total carbon sequestration,feldspar-rich clastic rocks therefore having considerable sequestration potential.展开更多
Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as followi...Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as following: Gold is mainly derived from the ore bearing wall rock,i.e., a series of epimetamorphic clastic gritstone, sandy slate, and tuffaceous slate in the Wuqiang Banxi Formation, Wuqiangxi Group. In thermal system with middle low temperature chlorine gold may be derived form stable complex ions, so it is quite important in gold metallogenic process. Sulphur and chlorine perform as the major negative ions throughout the gold activation and migration movement. The concentration of sulphur and chlorine ions, pH value and temperature are of deciding significance for gold activation, migration and precipitation.展开更多
Understanding the temporal and spatial variation of hydrochemical components in large freshwater lakes is crucial for effective management and conversation.In this study,we identify the temporalspatial characteristics...Understanding the temporal and spatial variation of hydrochemical components in large freshwater lakes is crucial for effective management and conversation.In this study,we identify the temporalspatial characteristics and driving factors of the hydrochemical components in Baiyangdian Lake using geochemical methods(Gibbs diagram,Piper diagram and End-element diagram of ion ratio)and multivariate statistical techniques(Principal component analysis and Correlation analysis).16 sets of samples were collected from Baiyangdian Lake in May(normal season),July(flood season),and December(dry season)of 2022.Results indicate significant spatial variation in Nat,ci,SO and NO,,suggesting a strong influence of human activities.Cation concentrations exhibit greater seasonal variation in the dry season compared to the flood season,while the concentrations of the four anions show inconsistent seasonal changes due to the combined effects of river water chemical composition and human activities.The hydrochemical type of Baiyangdian Lake is primarily HCO,Cl-Na.Ca,Mg*and HCO,originate mainly from silicate and carbonate rock dissolution,while Kt,Nat and CI originate mainly from sewage and salt dissolution in sediments.SO42 may mainly stem from industrial wastewater,while NO,primarily originates from animal feces and domestic sewage.Through the use of Principal Component Analysis,it is identified that water-rock interaction(silicate and carbonate rocks dissolution,and dissolution of salt in sediments),carbonate sedimentation,sewage,agricultural fertilizer and manure,and nitrification are the main driving factors of the variation of hydrochemical components of Baiyangdian Lake across three hydrological seasons.These findings suggest the need for effective control of substandard domestic sewage discharge,optimization of agricultural fertilization strategies,and proper management of animal manure to comprehensively improve the water environment in Baiyangdian Lake.展开更多
随着矿井水防治在煤矿开采中的重要性与日俱增,对地震精细勘探的方法也提出了更高要求,常规基于各向同性的地震勘探已无法满足对复杂条件下煤层及其顶底板的高精度勘探要求。根据煤系地层正交各向异性特征,综合其周期性薄互层各向异性...随着矿井水防治在煤矿开采中的重要性与日俱增,对地震精细勘探的方法也提出了更高要求,常规基于各向同性的地震勘探已无法满足对复杂条件下煤层及其顶底板的高精度勘探要求。根据煤系地层正交各向异性特征,综合其周期性薄互层各向异性和裂隙诱导型各向异性,针对具有垂直对称轴的横向各向同性(Transverse Isotropy Medium with Vertical Symmetry Axis,VTI)介质特性提出基于高阶动校正的广角成像方法拉平同相轴,提高远、近偏移动校正精度,针对方位各向异性(Trans-verse Isotropy with Horizontal Axis of Symmetry,HTI)介质特性应用炮检距向量片(Offset Vector Tile,OVT)域处理消除煤系地层构造裂隙下不同方位各向异性,在地震资料处理阶段提高成像精度及分辨率。在宽方位高保真成像基础上,岩性解释基于岩石物理特征的拟声波方法,通过对声波时差测井曲线进行重构,在速度曲线中融入地层岩性信息,通过反演迭代可分析地层岩性空间展布特征;裂隙解释基于OVT道集所包含的方位角偏移距信息椭圆拟合,得到地震波在不同方位衰减梯度,由方位衰减梯度数据拟合得到裂缝密度及方位推出地层裂缝密度分布特征,实现对影响矿井水灾两大关键参数煤层顶板含水层以及导水裂隙带的精细探查。在此基础上对煤层顶板产水危险区进行综合评估。将所提方法应用于研究区,实际资料含水风险评价与生产井情况吻合度较好,结果验证了所提出的风险评价方法的可行性及适用性,为煤层开采中矿井水灾危险区预测提供了有益参考。展开更多
基金Lijun,You,Innovative Research Project for Sichuan Youth Scientific and Technological Innovation(Grants No.2016TD0016)Qiuyang Cheng,Postdoctoral Research Project of Petrochina Southwest Oil and Gas Field Company(Grants No.20230304-13).
文摘Horizontal well drilling and multi-stage hydraulic fracturing technologies are at the root of commercial shale gas development and exploitation.During these processes,typically,a large amount of working fluid enters the formation,resulting in widespread water-rock interaction.Deeply understanding such effects is required to optimize the production system.In this study,the mechanisms of water-rock interaction and the associated responses of shale fabric are systematically reviewed for working fluids such as neutral fluids,acid fluids,alkali fluids and oxidative fluids.It is shown that shale is generally rich in water-sensitive components such as clay minerals,acidsensitive components(like carbonate minerals),alkali-sensitive components(like quartz),oxidative-sensitive components(like organic matter and pyrite),which easily lead to change of rock fabric and mechanical properties owing to water-rock interaction.According to the results,oxidizing acid fluids and oxidizing fracturing fluids should be used to enhance shale gas recovery.This study also indicates that an aspect playing an important role in increasing cumulative gas production is the optimization of the maximum shut-in time based on the change point of the wellhead pressure drop rate.Another important influential factor to be considered is the control of the wellhead pressure considering the stress sensitivity and creep characteristics of the fracture network.
文摘Water-rock interaction and groundwater mixing are important phenomena in understanding hydrogeological systems and the stability of rock slopes especially those consisting largely of moderately watersoluble minerals like calcite. In this study, the hydrogeological and geochemical evolutions of groundwater in a limestone quarry composed of three strata: limestone layer(covering), interbedded layer under the covering layer, and slaty greenstone layer(basement) were investigated. Water-rock interaction in the open-pit limestone quarry was evaluated using PHREEQC, while hierarchical cluster analysis(HCA)and principal component analysis(PCA) were used to classify and identify water sources responsible for possible groundwater mixing within rock layers. In addition, Geochemist's Workbench was applied to estimate the mixing fractions to clarify sensitive zones that may affect rock slope stability. The results showed that the changes in Ca2+and HCO3àconcentrations of several groundwater samples along the interbedded layer could be attributed to mixing groundwater from the limestone layer and that from slaty greenstone layer. Based on the HCA and PCA results, groundwaters were classified into several types depending on their origin:(1) groundwater from the limestone layer(LO),(2) mixed groundwater flowing along the interbedded layer(e.g., groundwater samples L-7, L-11, S-3 and S-4), and(3) groundwater originating from the slaty greenstone layer(SO). The mixing fractions of 41% LO: 59% SO, 64% LO: 36% SO, 43%LO: 57% SOand 25% LO: 75% SOon the normal days corresponded to groundwaters L-7, L-11, S-3 and S-4,respectively, while the mixing fractions of groundwaters L-7 and L-11(61% LO: 39% SOand 93% LO: 7% SO,respectively) on rainy days became the majority of groundwater originating from the limestone layer.These indicate that groundwater along the interbedded layer significantly affected the stability of rock slopes by enlarging multi-breaking zones in the layer through calcite dissolution and inducing high water pressure, tension cracks and potential sliding plane along this layer particularly during intense rainfall episodes.
基金Project(51374246,51474249)supported by the National Natural Science Foundation of ChinaProject(2013FJ6002)supported by the Science-Technology Project of Science-Technology Department of Hunan Province,China
文摘The subcritical crack growth and fracture toughness in peridotite, lherzolite and amphibolite were investigated with double torsion test. The results show that water-rock interaction has a significant influence on subcritical crack growth. With water-rock interaction, the crack velocity increases, while the stress intensity factor declines, which illustrates that water-rock interaction can decrease the strength of rocks and accelerate the subcritical crack growth. Based on Charlse theory and Hilling & Charlse theory, the test data were analyzed by regression and the correlation coefficients were all higher than 0.7, which shows the correlation is significant. This illustrates that both theories can explain the results of tests very well. Therefore, it is believed that the subcritical crack growth attributes to the breaking of chemical bond, which is caused by the combined effect of the tensile stress and the chemical reaction between the material at crack tip and the corrosive agent. Meanwhile, water-rock interaction has a vital effect on fracture toughness. The fracture toughness of samples under atmospheric environment is higher than that of samples immersed in water. And water-rock interaction has larger influence on fracture toughness in amphibolite than that in peridotite and lherzolite.
基金funded by the Fundamental Research Funds for the Central Universities,SCUT (No.2015QB02)the Special Fund for Yueqi Scholars (No.800015Z1207)。
文摘Water-rock flow is a kind of debris flow with more coarse particles and low viscosity, which occurs in many areas of the world. In this work, the water-rock flow that occurred on May 24, 2010, at Nanfen’s open-pit mine of China was investigated by combining field investigation, meteorological and hydrological survey with numerical simulation to understand its triggering mechanism and dynamic process. The field data shows that the short-term high-intensity rainfall is the most direct inducement to trigger water-rock flow in the waste dump. The loose shallow gravel soil and the V-shaped valley with a certain slope provide the necessary conditions of the occurrence of water-rock flow in the waste dump. Moreover, the possibility criterion of water-rock flow is presented by analyzing the historical rainfall data. In addition, the smoothed particle hydrodynamics(SPH) method was employed to simulate the waterrock flow under the conditions of Newtonian fluid with uniform distribution of water and coarse-grained materials. The simulating results show that the flow distance, velocity, shape, and deposition profile of water-rock flow are in good agreement with the field observation. The present work is beneficial to the risk assessment and mitigation design of water-rock flow disaster in the waste dump.
基金This research was supported by the National Natural Science Foundation of China (Grant No. 49473176)the Chinese Foundation for the Development of Geological Science and Technology(Grant No. 89042)
文摘The δ18O values of vein quartz of different stages from the Yinshan ore deposit are constant around 16‰ and the calculated δ18OH2O values attain 8‰± ; the δDH2O values of fluid inclu-sions in vein quartz are constant at about-60‰. From the surface down to 1200 m below the δ18O values of altered rocks gradually decrease from 15‰± to 11‰± . Various water-rock inversion calculations indicate that the ore fluids were formed by the interaction between meteoric water and phyllite at 350℃ and the effective W/ R value of around 0.1. When the water-rock exchange in the upper mineralization system took place, the effective W / R value increased to 5.0 or more. As a result, an evolution and mineralization model of a buffered open system with two-stage water-rock interactions is proposed in this study.
基金This research was supported financially by the National Key Technology Research and Development Program of China during the‘13th Five-Year Plan’(No.2016ZX05027-002-006).
文摘In the Xihu Sag,the reservoirs of the Paleogene Huagang formation have entered the middle diagenetic stage A and the rock physical properties of the water layer are considerably more suitable for the gas migration and storage than those of the present gas layer,indicating the inversion of the physical properties.In this study,core samples were collected from the corresponding reservoir to conduct water-rock reaction experiments in acidic,alkaline,and neutral systems under the specific temperature and pressure.The reasons for the inversion of physical properties were investigated based on the experiment results in reservoir diagenetic environments.The inversion of physical properties can be attributed to the fact that the diagenetic environment around the gas-water interface controls the water-rock reaction effect.With different types of acidic substances,two different situations corresponding to inverted physical properties were analyzed along with the corresponding mechanisms.When the pore fluid is acidic,the physical properties make the overall water layer a better reservoir space than the gas layer,which can be referred to as the overall inversion of physical properties.When the fluid were generally neutral or weakly alkaline and the gas layer was rich in CO2,only the physical properties of the water layer adjacent to the gas-water interface were more favorable for the gas migration than those of the gas layer.This phenomenon can be referred to as the near-interface inversion of physical properties.
基金funded by grants from the Beijing Natural Science Foundation (Grant No. 8232044)the Natural Science Foundation of the Xinjiang Uygur Autonomous Region (Grant No. 2021D01F38)China Geological Survey Second-level Project (Grant No. DD20230025)。
文摘The Lucaogou Formation,located in the Jimsar Sag,Junggar Basin,NW China,has great potential for shale oil resources.In the process of CO_(2)-EOR(CO_(2) enhance oil recovery),mineral dissolution,precipitation and transformation,leading to the local corrosion or blockage of reservoirs,have a significant influence on recovery.In this study,a combination of high-temperature and high-pressure laboratory experiments and coupled temperature/fluid-chemistry multifield numerical simulations are used to investigate CO_(2)-water-rock reactions under various reservoir conditions in the upper and lower ’sweet spots’,to reveal the mechanisms underlying CO_(2)-induced mineral dissolution,precipitation and transformation.In addition,we quantitatively calculated the evolution of porosity over geological timescales;compared and analyzed the variability of CO_(2) transformation in the reservoir under a variety of temperature,lithology and solution conditions;and identified the main factors controlling CO_(2)-water-rock reactions,the types of mineral transformation occurring during long-term CO_(2) sequestration and effective carbon sequestration minerals.The results demonstrate that the main minerals undergoing dissolution under the influence of supercritical CO_(2) are feldspars,while the main minerals undergoing precipitation include carbonate rock minerals,clay minerals and quartz.Feldspar minerals,especially the initially abundant plagioclase in the formation,directly affects total carbon sequestration,feldspar-rich clastic rocks therefore having considerable sequestration potential.
基金The Doctoral Foundation of the Education Ministry of China(970 53 0 1) The Natural Science Foundationof Hunan province (97JJ2 0 5)
文摘Based on the knowing geochemical characteristics of wall rock in the Mobin gold deposit and composition of fluid inclusion in ore,water rock experiments were carried out, important achievements are acquired as following: Gold is mainly derived from the ore bearing wall rock,i.e., a series of epimetamorphic clastic gritstone, sandy slate, and tuffaceous slate in the Wuqiang Banxi Formation, Wuqiangxi Group. In thermal system with middle low temperature chlorine gold may be derived form stable complex ions, so it is quite important in gold metallogenic process. Sulphur and chlorine perform as the major negative ions throughout the gold activation and migration movement. The concentration of sulphur and chlorine ions, pH value and temperature are of deciding significance for gold activation, migration and precipitation.
基金supported by the Natural Science Foundation of China(Grant No.42377232)Natural Science Foundation of Hebei Province of China(Grant No.D2022504015)+1 种基金the Fundamental Research Funds for the Chinese Academy of Geological Sciences(No.YK202310)the open funds of laboratory of water environmental science of Hebei Province,China(Grant No.HBSHJ 202103).
文摘Understanding the temporal and spatial variation of hydrochemical components in large freshwater lakes is crucial for effective management and conversation.In this study,we identify the temporalspatial characteristics and driving factors of the hydrochemical components in Baiyangdian Lake using geochemical methods(Gibbs diagram,Piper diagram and End-element diagram of ion ratio)and multivariate statistical techniques(Principal component analysis and Correlation analysis).16 sets of samples were collected from Baiyangdian Lake in May(normal season),July(flood season),and December(dry season)of 2022.Results indicate significant spatial variation in Nat,ci,SO and NO,,suggesting a strong influence of human activities.Cation concentrations exhibit greater seasonal variation in the dry season compared to the flood season,while the concentrations of the four anions show inconsistent seasonal changes due to the combined effects of river water chemical composition and human activities.The hydrochemical type of Baiyangdian Lake is primarily HCO,Cl-Na.Ca,Mg*and HCO,originate mainly from silicate and carbonate rock dissolution,while Kt,Nat and CI originate mainly from sewage and salt dissolution in sediments.SO42 may mainly stem from industrial wastewater,while NO,primarily originates from animal feces and domestic sewage.Through the use of Principal Component Analysis,it is identified that water-rock interaction(silicate and carbonate rocks dissolution,and dissolution of salt in sediments),carbonate sedimentation,sewage,agricultural fertilizer and manure,and nitrification are the main driving factors of the variation of hydrochemical components of Baiyangdian Lake across three hydrological seasons.These findings suggest the need for effective control of substandard domestic sewage discharge,optimization of agricultural fertilization strategies,and proper management of animal manure to comprehensively improve the water environment in Baiyangdian Lake.
文摘随着矿井水防治在煤矿开采中的重要性与日俱增,对地震精细勘探的方法也提出了更高要求,常规基于各向同性的地震勘探已无法满足对复杂条件下煤层及其顶底板的高精度勘探要求。根据煤系地层正交各向异性特征,综合其周期性薄互层各向异性和裂隙诱导型各向异性,针对具有垂直对称轴的横向各向同性(Transverse Isotropy Medium with Vertical Symmetry Axis,VTI)介质特性提出基于高阶动校正的广角成像方法拉平同相轴,提高远、近偏移动校正精度,针对方位各向异性(Trans-verse Isotropy with Horizontal Axis of Symmetry,HTI)介质特性应用炮检距向量片(Offset Vector Tile,OVT)域处理消除煤系地层构造裂隙下不同方位各向异性,在地震资料处理阶段提高成像精度及分辨率。在宽方位高保真成像基础上,岩性解释基于岩石物理特征的拟声波方法,通过对声波时差测井曲线进行重构,在速度曲线中融入地层岩性信息,通过反演迭代可分析地层岩性空间展布特征;裂隙解释基于OVT道集所包含的方位角偏移距信息椭圆拟合,得到地震波在不同方位衰减梯度,由方位衰减梯度数据拟合得到裂缝密度及方位推出地层裂缝密度分布特征,实现对影响矿井水灾两大关键参数煤层顶板含水层以及导水裂隙带的精细探查。在此基础上对煤层顶板产水危险区进行综合评估。将所提方法应用于研究区,实际资料含水风险评价与生产井情况吻合度较好,结果验证了所提出的风险评价方法的可行性及适用性,为煤层开采中矿井水灾危险区预测提供了有益参考。