This paper describes a systematic study on the fundamental features of seismic soil pressure on underground tunnels, in terms of its magnitude and distribution, and further identifi es the dominant factors that signif...This paper describes a systematic study on the fundamental features of seismic soil pressure on underground tunnels, in terms of its magnitude and distribution, and further identifi es the dominant factors that signifi cantly infl uence the seismic soil pressure. A tunnel embedded in water-saturated poroelastic half-space is considered, with a large variety of model and excitation parameters. The primary features of both the total soil pressure and the pore pressure are investigated. Taking a circular tunnel as an example, the results are presented using a fi nite element-indirect boundary element(FE-IBE) method, which can account for dynamic soil-tunnel interaction and solid frame-pore water coupling. The effects of tunnel stiffness, tunnel buried depth and input motions on the seismic soil pressure and pore pressure are also examined. It is shown that the most crucial factors that dominate the magnitude and distribution of the soil pressure are the tunnel stiffness and dynamic soil-tunnel interaction. Moreover, the solid frame-pore water coupling has a prominent infl uence on the magnitude of the pore pressure. The fi ndings are benefi cial to obtain insight into the seismic soil pressure on underground tunnels, thus facilitating more accurate estimation of the seismic soil pressure.展开更多
Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils shou...Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils should exist,below which there is a high risk of soil clogging in shield tunneling.To determine the critical particle size,a series of laboratory tests was carried out with a large-scale rotary shear apparatus to measure the tangential adhesion strength of soils with different particle sizes and water contents.It was found that the tangential adhesion strength at the soilesteel interface gradually increased linearly with applied normal pressure.When the particle size of the soil specimen was less than 0.15 mm,the interfacial adhesion force first increased and then decreased as the water content gradually increased;otherwise,the soil specimens did not manifest any interfacial adhesion force.The amount of soil mass adhering to the steel disc was positively correlated with the interfacial adhesion force,thus the interfacial adhesion force was adopted to characterize the soil clogging risk in shield tunneling.The critical particle size of soils causing clogging was determined to be 0.15 mm.Finally,the generation mechanism of interfacial adhesion force was explored for soils with different particle sizes to explain the critical particle size of soil with clogging risk in shield tunneling.展开更多
According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer str...According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.展开更多
Underground utility tunnels are the most fundamental and reliable lifeline network in urban cities,and are widely constructed throughout the world.In urban areas,most utility tunnels usually encounter the non-homogene...Underground utility tunnels are the most fundamental and reliable lifeline network in urban cities,and are widely constructed throughout the world.In urban areas,most utility tunnels usually encounter the non-homogeneity of subsoil condition due to various construction effects.Studies have shown that the damage mechanism of shallow underground structures mainly depends on the inhomogeneity of the subsoil conditions.This would become a considerable factor for the stability of the underground utility tunnel structures.However,this type of research still needs to establish the vulnerable seismic design.In this study,a series of shaking table tests were conducted on non-homogenous soils to investigate the performance of seismic interaction between utility tunnels,surrounding soils and interior pipelines.The dynamic responses measured from the test account for the boundary condition of non-homogeneous soils,the internal forces,displacement of tunnel joints,the dynamic characteristics on interior pipelines and the reasonable spring stiffness with damping in the seismically isolated gas pipeline model inside the tunnel.The vulnerability of underground utility tunnel in non-homogeneous soil zone and the mechanism of the stability of interior facilities are the main topics discussed in this paper.展开更多
A stability analysis approach of tunnel face considering a longitudinally inclined tunnel angle and anisotropic purely cohesive soils based on a continuous velocity field (CVF) is investigated in this study. Based on ...A stability analysis approach of tunnel face considering a longitudinally inclined tunnel angle and anisotropic purely cohesive soils based on a continuous velocity field (CVF) is investigated in this study. Based on the kinematic approach of limit analysis and the discretization technique, an improved three-dimensional CVF model for longitudinally inclined tunnels driven by pressurized shields is proposed. With the proposed model, the critical support pressure acted on tunnel face is determined by the work-balance equation. A serial of finite element numerical models are conducted to validate the proposed model. Finally, the effects of tunnel inclination angles, several dimensionless parameters as well as soil anisotropy on the critical support pressure are investigated. The numerical results show that the effects of the soil anisotropy and the tunnel inclination angle on tunnel faces should be considered in the actual design of tunneling engineering.展开更多
The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of soun...The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of sound and altered rock, as well as to inhomogeneous soil layers that range from permeable gravel to soft clay sediments along the same tunnel. This article focuses on past experiences with tunnel-boring machines (TBMs) in Switzerland, and specifically on the aspects of soil conditioning during a passage through inhomogeneous soft soils. Most tunnels in the past were drilled using the slurry mode (SM), in which the application of different additives was mainly limited to difficult zones of high permeability and stoppages for tool change and modification. For drillings with the less common earth pressure balanced mode (EPBM), continuous foam conditioning and the additional use of polymer and bentonite have proven to be successful. The use of conditioning additives led to new challenges during separation of the slurries (for SM) and disposal of the excavated soil (for EPBM). If the disposal of chemically treated soft soil mate- rial from the earth pressure balanced (EPB) drive in a manner that is compliant with environmental legislation is considered early on in the design and evaluation of the excavation mode, the EPBM can be beneficial for tunnels bored in glacial deposits.展开更多
At the peak of the Vietnam War, the network of tunnels in the Iron Triangle and Cu Chi linked Viet Cong (VC) support bases over a distance of some 250 km, from the Ho Chi Minh Trail and Cambodian border to the outskir...At the peak of the Vietnam War, the network of tunnels in the Iron Triangle and Cu Chi linked Viet Cong (VC) support bases over a distance of some 250 km, from the Ho Chi Minh Trail and Cambodian border to the outskirts Saigon. In the early 1960s, the United States escalated its military presence in Vietnam in support of a non-Communist regime in South Vietnam. The North Vietnamese and VC troops gradually expanded the tunnels. Tunnels frequently were dug by hand in Old Alluvium terraces, and only a short distance at a time. Four major efforts were made by the US Military to locate and destroy these tunnels. These included Operation Crimp, a search and destroy mission which began in 1966 and a geological and soil survey approach was used to detect VC tunnels. Later in 1967, General William Westmoreland tried launching a larger assault on Cu Chi and the Iron Triangle areas. The operation called Operation Cedar Falls was an expanded version of Operation Crimp. Finally in 1969, B-52s started carpet bombing the Cu Chi and Iron Triangle areas and destroyed many of the tunnels. However, not before the tunnels had proven very effective in 1960s at hiding and protecting the VC during US occupation of the area. The nature and properties of the Old Alluvium soils were key to the soil tunnels being so resilient. Soils located in Old Alluvium terraces had high levels of clay and iron. Iron (Fe) leached from the upper soil layers (0 to 1.5 m) and accumulated in the lower layers (1.5 to 20 m) and became a cement-like binding agent. When dried the soil layers took on properties close to concrete, and were resistant to ever becoming soft and moist again especially around the aerated tunnel walls. The tunnels were dug in the monsoon season when the upper layers of soil were soft and moist but not in dry season. The soils were highly stable without any lining or support. After drying out, the soil materials surrounding the tunnel turned into concrete like material that could withstand adjacent explosive blasts.展开更多
This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations.The soil is modeled as layered media,and the circular ...This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations.The soil is modeled as layered media,and the circular tunnel lining is modeled as an infinite Flügge cylindrical shell.The separation of variables method is used to solve the motion equation of the shell,and the wave equation of the soil is solved using the Helmholtz decomposition theorem.A dynamic matrix reflecting the wave vectors of soil layers is established using the transfer matrix method.Based on boundary conditions,the tunnel-soil model is coupled using the transformation method of plane wave functions and cylindrical wave functions.The proposed model is validated by comparison with existing tunnel models,and the effects of saturation and the layered properties of soil on the dynamic response of a layered tunnel-soil system is demonstrated via case studies.展开更多
The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of eval...The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application.展开更多
For more than 2500 years, soil tunnels have been used in warfare and smuggling. Initially tunnels were utilized to attack fortresses that were underlain by unconsolidated (non-bedrock) soil materials. Later tunnels pr...For more than 2500 years, soil tunnels have been used in warfare and smuggling. Initially tunnels were utilized to attack fortresses that were underlain by unconsolidated (non-bedrock) soil materials. Later tunnels provided housing and served as smuggling corridors. The medieval warfare undermining technique involved digging soil tunnels with wooden or beam props to hold up the soil ceilings. Then flammable material, such as hay or straw, was put in the tunnel and set on fire. The fire burnt the support beams which collapsed the soil tunnel ceilings and undermined the overlying perimeter wall. Later gunpowder and dynamite replaced fire when attempting to collapse a tunnel, fortress or perimeter defense. Modern warfare soil tunnels were the pathways used to move troops, weapons and supplies to the other side of a border or wall for surprise attacks. Most of the soil tunnels were placed in easy-to-dig unconsolidated soil materials that had a low water table and were not subject to flooding. Eventually, machinery was used to drill through bedrock permitting deeper and longer tunnels for troop movement or smuggling. However, when drilling through bedrock under international borders, the process creates both noise and vibrations which were often detected by the enemy. Once discovered the tunnels were often collapsed by blowing up the tunnel, injection of gas, filling with water or wastewater, or inserting barriers. A series of case studies will be examined with the goal of determining soil and site criteria required to permit successful tunneling. The most restrictive soil and geologic conditions will be identified as well as potential mitigation methods used to overcome the site restrictions will be documented. Countries with warfare or smuggling issues along their borders, such as Israel and United States, need to identify the sections of the border most likely to be undermined by soil tunnels. In the case of Israel their entire border is susceptible as a result of the favorable arid climate, soils and geology. The US border with Mexico can become vulnerable wherever a new wall is created. Without a wall there is usually no need for soil tunnels. The US Department of Homeland Security and border patrol will need to monitor the noise and vibrations, just like the Israel does, to identify future soil tunnel locations. Eventually most of 3200 km border will have a wall that will become the target of more soil tunnels for smuggling goods and people from Mexico into the United States.展开更多
A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pr...A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pressure is determined by using the finite element method. A linear quadratic constant state tracking problem was considered over an infinite time interval. The optimal control law was derived by differentiating the Hamilton function with respect to system input. In order to verify the effectiveness of the proposed mathematical model and optimal control law, an experimental study on the pressure control of the soil chamber in shield tunneling was conducted in a laboratory. The experiment results show that soil pressure in the soil chamber in shield tunneling can be accurately controlled.展开更多
According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of...According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of structure built and developed in advanced countries. In most situation, tunnel digging operations are done years after its construction or are not recorded in new structures regulations;therefore, this research investigates soil settlement and inserting force to tunnel coverage by limiting studies about effects of tunnel shapes on soil settlement using Plaxis, Seismo Signal, and Seismo Aspect. This study shows that rectangular tunnel has the most settlement in soil surface and circular tunnel has the least settlement but horseshoe tunnel has similar behavior to circular tunnel;however, earth subsidence level by digging this tunnel is more than circular tunnel. In addition, sectional shape has direct effect on inserting forces on tunnel coverage.展开更多
The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subj...The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.展开更多
The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space, which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves. The ind...The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space, which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves. The indirect boundary element method is used, combined with the Green' s function of distributed loads acting on inclined lines. It is shown that the dynamic characteristics of soil-tunnel interaction in layered half-space are different much from that in homoge- neous half-space, and that the mechanism of soil-tunnel interaction is also different much from that of soil-founda- tion-superstructure interaction. For oblique incidence, the tunnel response for in-plane incident SV-waves is com- pletely different from that for incident SH-waves, while the tunnel response for vertically incident SV-wave is very similar to that of vertically incident SH-wave.展开更多
Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.H...Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.How to assess and control the deformation of the ground is the main purpose of the soil reinforcement technology.Grouting is a method commonly used to meet those requirements.This study is designed to investigate the effects on shield construction in the sand-gravel stratum.展开更多
Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempte...Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempted to achieve this simulation.A variable boundary condition method for hybrid regional model is proposed to realize the numerical simulation of large-section tunnel construction.Accordingly,the balance of initial ground stress under asymmetric boundary conditions achieves by applying boundary conditions step by step with secondary development ofDynaflowscripts,which is the key issue of variable boundary conditionmethod implementation.In this paper,Gongbei tunnel based on hybrid regional model involvingmulti-field coupling is simulated.Meanwhile,the variable boundary condition method for regional model is verified against model initialization and the ground deformation due to tunnel excavation is predicted via the proposed hybrid regional model.Compared with the monitoring data of actual engineering,the results indicated that the hybrid regional model has a good prediction effect.展开更多
基金Supported by:National Natural Science Foundation of China under Grant No.51978462
文摘This paper describes a systematic study on the fundamental features of seismic soil pressure on underground tunnels, in terms of its magnitude and distribution, and further identifi es the dominant factors that signifi cantly infl uence the seismic soil pressure. A tunnel embedded in water-saturated poroelastic half-space is considered, with a large variety of model and excitation parameters. The primary features of both the total soil pressure and the pore pressure are investigated. Taking a circular tunnel as an example, the results are presented using a fi nite element-indirect boundary element(FE-IBE) method, which can account for dynamic soil-tunnel interaction and solid frame-pore water coupling. The effects of tunnel stiffness, tunnel buried depth and input motions on the seismic soil pressure and pore pressure are also examined. It is shown that the most crucial factors that dominate the magnitude and distribution of the soil pressure are the tunnel stiffness and dynamic soil-tunnel interaction. Moreover, the solid frame-pore water coupling has a prominent infl uence on the magnitude of the pore pressure. The fi ndings are benefi cial to obtain insight into the seismic soil pressure on underground tunnels, thus facilitating more accurate estimation of the seismic soil pressure.
基金The financial support from the National Natural Science Foun-dation of China(Grant Nos.52022112 and 51778637)the Sci-ence and Technology Innovation Program of Hunan Province(Grant No.2021RC3015)are acknowledged and appreciated.
文摘Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils should exist,below which there is a high risk of soil clogging in shield tunneling.To determine the critical particle size,a series of laboratory tests was carried out with a large-scale rotary shear apparatus to measure the tangential adhesion strength of soils with different particle sizes and water contents.It was found that the tangential adhesion strength at the soilesteel interface gradually increased linearly with applied normal pressure.When the particle size of the soil specimen was less than 0.15 mm,the interfacial adhesion force first increased and then decreased as the water content gradually increased;otherwise,the soil specimens did not manifest any interfacial adhesion force.The amount of soil mass adhering to the steel disc was positively correlated with the interfacial adhesion force,thus the interfacial adhesion force was adopted to characterize the soil clogging risk in shield tunneling.The critical particle size of soils causing clogging was determined to be 0.15 mm.Finally,the generation mechanism of interfacial adhesion force was explored for soils with different particle sizes to explain the critical particle size of soil with clogging risk in shield tunneling.
基金supported by the Construction and Scientific Research Project of the Zhejiang Provincial Department of Housing and Urban-Rural Development(No.2021K126,Granted byM.J.,Long,URL:https://jst.zj.gov.cn/)the ScientificResearch Project of ChinaConstruction 4th Engineering Bureau(No.CSCEC4B-2022-KTA-10,Granted by Z.C.,Bai,URL:https://4 bur.cscec.com/)+2 种基金the Scientific Research Project of China Construction 4th Engineering Bureau(No.CSCEC4B-2023-KTA-10,Granted by D.J.,Geng,URL:https://4bur.cscec.com/)the Natural Science Foundation of Hubei Province(No.2022CFD055,Granted by N.,Dai,URL:https://kjt.hubei.gov.cn/)the National Key Research and Development Program of China under Grant No.2022YFC3803002.
文摘According to the design specifications,the construction of extended piles involves traversing the tunnel’s upper region and extending to the underlying rock layer.To address this challenge,a subterranean transfer structure spanning multiple subway tunnels was proposed.Deliberating on the function of piles in the transfer structure as springs with axial and bending stiffness,and taking into account the force balance and deformation coordination conditions of beams and plates within the transfer structure,we established a simplified mechanical model that incorporates soil stratification by combining it with the Winkler elastic foundation beam model.The resolved established simplifiedmechanicalmodel employed finite difference technology and the Newton-Simpsonmethod,elucidating the mechanical mechanism of the transfer structure.The research findings suggest that the load carried by the upper structural columns can be transferred to the pile foundation beneath the beams through the transfer structure,subsequently reaching the deep soil layer and ensuring minimal impact on adjacent tunnels.The established simplified analysis method can be used for stress analysis of the transfer structure,concurrently considering soil stratification,pile foundation behavior,and plate action.The pile length,pile section size,and beam section size within the transfer structure should account for the characteristics of the upper load,ensuring an even distribution of the beam bending moment.
基金National Key Research and Invention Program of The Thirteenth under Grant Nos.2016YFC0802407,2018YFC0809605。
文摘Underground utility tunnels are the most fundamental and reliable lifeline network in urban cities,and are widely constructed throughout the world.In urban areas,most utility tunnels usually encounter the non-homogeneity of subsoil condition due to various construction effects.Studies have shown that the damage mechanism of shallow underground structures mainly depends on the inhomogeneity of the subsoil conditions.This would become a considerable factor for the stability of the underground utility tunnel structures.However,this type of research still needs to establish the vulnerable seismic design.In this study,a series of shaking table tests were conducted on non-homogenous soils to investigate the performance of seismic interaction between utility tunnels,surrounding soils and interior pipelines.The dynamic responses measured from the test account for the boundary condition of non-homogeneous soils,the internal forces,displacement of tunnel joints,the dynamic characteristics on interior pipelines and the reasonable spring stiffness with damping in the seismically isolated gas pipeline model inside the tunnel.The vulnerability of underground utility tunnel in non-homogeneous soil zone and the mechanism of the stability of interior facilities are the main topics discussed in this paper.
基金Project(2017YFB1201204)supported by the National Key Research and Development Program of China
文摘A stability analysis approach of tunnel face considering a longitudinally inclined tunnel angle and anisotropic purely cohesive soils based on a continuous velocity field (CVF) is investigated in this study. Based on the kinematic approach of limit analysis and the discretization technique, an improved three-dimensional CVF model for longitudinally inclined tunnels driven by pressurized shields is proposed. With the proposed model, the critical support pressure acted on tunnel face is determined by the work-balance equation. A serial of finite element numerical models are conducted to validate the proposed model. Finally, the effects of tunnel inclination angles, several dimensionless parameters as well as soil anisotropy on the critical support pressure are investigated. The numerical results show that the effects of the soil anisotropy and the tunnel inclination angle on tunnel faces should be considered in the actual design of tunneling engineering.
文摘The history of the formation of the alpine region is affected by the activities of the glaciers, which have a strong influence on underground works in this area. Mechanized tunneling must adapt to the presence of sound and altered rock, as well as to inhomogeneous soil layers that range from permeable gravel to soft clay sediments along the same tunnel. This article focuses on past experiences with tunnel-boring machines (TBMs) in Switzerland, and specifically on the aspects of soil conditioning during a passage through inhomogeneous soft soils. Most tunnels in the past were drilled using the slurry mode (SM), in which the application of different additives was mainly limited to difficult zones of high permeability and stoppages for tool change and modification. For drillings with the less common earth pressure balanced mode (EPBM), continuous foam conditioning and the additional use of polymer and bentonite have proven to be successful. The use of conditioning additives led to new challenges during separation of the slurries (for SM) and disposal of the excavated soil (for EPBM). If the disposal of chemically treated soft soil mate- rial from the earth pressure balanced (EPB) drive in a manner that is compliant with environmental legislation is considered early on in the design and evaluation of the excavation mode, the EPBM can be beneficial for tunnels bored in glacial deposits.
文摘At the peak of the Vietnam War, the network of tunnels in the Iron Triangle and Cu Chi linked Viet Cong (VC) support bases over a distance of some 250 km, from the Ho Chi Minh Trail and Cambodian border to the outskirts Saigon. In the early 1960s, the United States escalated its military presence in Vietnam in support of a non-Communist regime in South Vietnam. The North Vietnamese and VC troops gradually expanded the tunnels. Tunnels frequently were dug by hand in Old Alluvium terraces, and only a short distance at a time. Four major efforts were made by the US Military to locate and destroy these tunnels. These included Operation Crimp, a search and destroy mission which began in 1966 and a geological and soil survey approach was used to detect VC tunnels. Later in 1967, General William Westmoreland tried launching a larger assault on Cu Chi and the Iron Triangle areas. The operation called Operation Cedar Falls was an expanded version of Operation Crimp. Finally in 1969, B-52s started carpet bombing the Cu Chi and Iron Triangle areas and destroyed many of the tunnels. However, not before the tunnels had proven very effective in 1960s at hiding and protecting the VC during US occupation of the area. The nature and properties of the Old Alluvium soils were key to the soil tunnels being so resilient. Soils located in Old Alluvium terraces had high levels of clay and iron. Iron (Fe) leached from the upper soil layers (0 to 1.5 m) and accumulated in the lower layers (1.5 to 20 m) and became a cement-like binding agent. When dried the soil layers took on properties close to concrete, and were resistant to ever becoming soft and moist again especially around the aerated tunnel walls. The tunnels were dug in the monsoon season when the upper layers of soil were soft and moist but not in dry season. The soils were highly stable without any lining or support. After drying out, the soil materials surrounding the tunnel turned into concrete like material that could withstand adjacent explosive blasts.
基金Supported by:National Natural Science Foundation of China under Grant No.51808405。
文摘This paper proposes an analytical model for evaluating the dynamic response of an underground railway tunnel in layered foundation soil with different saturations.The soil is modeled as layered media,and the circular tunnel lining is modeled as an infinite Flügge cylindrical shell.The separation of variables method is used to solve the motion equation of the shell,and the wave equation of the soil is solved using the Helmholtz decomposition theorem.A dynamic matrix reflecting the wave vectors of soil layers is established using the transfer matrix method.Based on boundary conditions,the tunnel-soil model is coupled using the transformation method of plane wave functions and cylindrical wave functions.The proposed model is validated by comparison with existing tunnel models,and the effects of saturation and the layered properties of soil on the dynamic response of a layered tunnel-soil system is demonstrated via case studies.
基金Project(2011CB013600) supported by State Key Program for Basic Research of ChinaProject(20136201110003) supported by the Education Ministry Doctoral Tutor Foundation of China+1 种基金Project(51368039) supported by the National Natural Science Foundation of ChinaProject(2013-4-94) supported by the Program of Science and Technology Research in Lanzhou City,China
文摘The objective of this work is to obtain the seismic safety coefficient and fracture surface and proceed with the seismic safety evaluation for the rock mass or soil mass surrounding a tunnel,and the limitation of evaluating seismic stability is considered using the pseudo-static strength reduction.By using the finite element software ANSYS and the strength reduction method,new methods of seismic safety evaluation for the rock mass or soil mass surrounding a tunnel are put forward,such as the dynamic finite element static shear strength reduction method and dynamic finite element shear strength reduction method.In order to prove the feasibility of the proposed methods,the results of numerical examples are compared with that of the pseudo-static strength reduction method.The results show that 1) the two methods are both feasible,and the plastic zone first appears near the bottom corners; 2) the safety factor of new method Ⅱ is smaller than that of new method I but generally,and the difference is very small.Therefore,in order to ensure the safety of the structure,two new methods are proposed to evaluate the seismic stability of the rock mass or soil mass surrounding a tunnel.A theoretical basis is provided for the seismic stability of the rock mass or soil mass and the lining surrounding a tunnel and also provided for the engineering application.
文摘For more than 2500 years, soil tunnels have been used in warfare and smuggling. Initially tunnels were utilized to attack fortresses that were underlain by unconsolidated (non-bedrock) soil materials. Later tunnels provided housing and served as smuggling corridors. The medieval warfare undermining technique involved digging soil tunnels with wooden or beam props to hold up the soil ceilings. Then flammable material, such as hay or straw, was put in the tunnel and set on fire. The fire burnt the support beams which collapsed the soil tunnel ceilings and undermined the overlying perimeter wall. Later gunpowder and dynamite replaced fire when attempting to collapse a tunnel, fortress or perimeter defense. Modern warfare soil tunnels were the pathways used to move troops, weapons and supplies to the other side of a border or wall for surprise attacks. Most of the soil tunnels were placed in easy-to-dig unconsolidated soil materials that had a low water table and were not subject to flooding. Eventually, machinery was used to drill through bedrock permitting deeper and longer tunnels for troop movement or smuggling. However, when drilling through bedrock under international borders, the process creates both noise and vibrations which were often detected by the enemy. Once discovered the tunnels were often collapsed by blowing up the tunnel, injection of gas, filling with water or wastewater, or inserting barriers. A series of case studies will be examined with the goal of determining soil and site criteria required to permit successful tunneling. The most restrictive soil and geologic conditions will be identified as well as potential mitigation methods used to overcome the site restrictions will be documented. Countries with warfare or smuggling issues along their borders, such as Israel and United States, need to identify the sections of the border most likely to be undermined by soil tunnels. In the case of Israel their entire border is susceptible as a result of the favorable arid climate, soils and geology. The US border with Mexico can become vulnerable wherever a new wall is created. Without a wall there is usually no need for soil tunnels. The US Department of Homeland Security and border patrol will need to monitor the noise and vibrations, just like the Israel does, to identify future soil tunnel locations. Eventually most of 3200 km border will have a wall that will become the target of more soil tunnels for smuggling goods and people from Mexico into the United States.
基金Supported by the National Basic Research Project (2007CB714006, 90815023) the National Natural Science Foundation of China (GZ0818, GZ1107)
文摘A mathematical model of the soil pressure system in shield tunneling was proposed to optimize soil pressure control in the soil chamber, based on the constitutive relationship between strain and stress. The desired pressure is determined by using the finite element method. A linear quadratic constant state tracking problem was considered over an infinite time interval. The optimal control law was derived by differentiating the Hamilton function with respect to system input. In order to verify the effectiveness of the proposed mathematical model and optimal control law, an experimental study on the pressure control of the soil chamber in shield tunneling was conducted in a laboratory. The experiment results show that soil pressure in the soil chamber in shield tunneling can be accurately controlled.
文摘According to technology development and relative facilitation in digging and underground structures, ways, highways, all types of tunnels, underground train network, and other underground settle, storage are number of structure built and developed in advanced countries. In most situation, tunnel digging operations are done years after its construction or are not recorded in new structures regulations;therefore, this research investigates soil settlement and inserting force to tunnel coverage by limiting studies about effects of tunnel shapes on soil settlement using Plaxis, Seismo Signal, and Seismo Aspect. This study shows that rectangular tunnel has the most settlement in soil surface and circular tunnel has the least settlement but horseshoe tunnel has similar behavior to circular tunnel;however, earth subsidence level by digging this tunnel is more than circular tunnel. In addition, sectional shape has direct effect on inserting forces on tunnel coverage.
基金National Natural Science Foundation of China under Grant 51378384Key Project of Natural Science Foundation of Tianjin Municipality under Grant 12JCZDJC29000
文摘The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.
基金supported by the National Natural Science Foundation of China(No.51378384)the Key Project of Natural Science Foundation of Tianjin Municipality(No. 12JCZDJC29000)
文摘The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space, which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves. The indirect boundary element method is used, combined with the Green' s function of distributed loads acting on inclined lines. It is shown that the dynamic characteristics of soil-tunnel interaction in layered half-space are different much from that in homoge- neous half-space, and that the mechanism of soil-tunnel interaction is also different much from that of soil-founda- tion-superstructure interaction. For oblique incidence, the tunnel response for in-plane incident SV-waves is com- pletely different from that for incident SH-waves, while the tunnel response for vertically incident SV-wave is very similar to that of vertically incident SH-wave.
文摘Sand-gravel soil may not be suitable for structure use or excavation use as a result of their permeability and low-intensity.It may cause serious damage to the upper part of the structure for its considerable stress.How to assess and control the deformation of the ground is the main purpose of the soil reinforcement technology.Grouting is a method commonly used to meet those requirements.This study is designed to investigate the effects on shield construction in the sand-gravel stratum.
基金supported by the financial support from National Natural Sci-ence Foundation of China(No.51478340)Natural Science Foundation of Jiangsu Province(No.BK20200707)+2 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJB560029)China Postdoctoral Science Foundation(No.2020M671670)Key Laboratory of Soft Soils and Geoenvironmental Engineering(Zhejiang University),Ministry of Education(No.2020P04).
文摘Due to the large number of finite element mesh generated,it is difficult to use full-scale model to simulate largesection underground engineering,especially considering the coupling effect.A regional model is attempted to achieve this simulation.A variable boundary condition method for hybrid regional model is proposed to realize the numerical simulation of large-section tunnel construction.Accordingly,the balance of initial ground stress under asymmetric boundary conditions achieves by applying boundary conditions step by step with secondary development ofDynaflowscripts,which is the key issue of variable boundary conditionmethod implementation.In this paper,Gongbei tunnel based on hybrid regional model involvingmulti-field coupling is simulated.Meanwhile,the variable boundary condition method for regional model is verified against model initialization and the ground deformation due to tunnel excavation is predicted via the proposed hybrid regional model.Compared with the monitoring data of actual engineering,the results indicated that the hybrid regional model has a good prediction effect.