期刊文献+
共找到532篇文章
< 1 2 27 >
每页显示 20 50 100
Characteristics and Functions of Cooperative Economic Organizations for Water-saving Irrigation in Agricultural Development in Arid Areas 被引量:4
1
作者 吴开波 朱美玲 +1 位作者 董新光 李金 《Agricultural Science & Technology》 CAS 2011年第12期1979-1982,共4页
Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irr... Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irrigation technologies.Currently,there are few researches on this cooperative economic organization.In this study,connotations of cooperative economic organizations for water-saving irrigation are specifically defined,and the characteristics and functions of this cooperative economic organization are analyzed.Based on that,several suggestions are proposed on the continuous development of cooperative economic organizations for water-saving irrigation. 展开更多
关键词 Cooperative economic organizations water-saving irrigation CHARACTERISTICS FUNCTIONS
下载PDF
Application of Automatic Water-saving Irrigation System in Roof Gardens 被引量:1
2
作者 周炼 张美 《Journal of Landscape Research》 2009年第4期75-79,共5页
Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-sa... Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature. 展开更多
关键词 AUTOMATIC irrigation water-saving irrigation ROOF GARDEN
下载PDF
Design and Construction of Rainwater Harvesting and Water-saving Irrigation System of Toona sinensis on Mountain Slopes 被引量:1
3
作者 尹庆珍 谷成铜 +1 位作者 张立永 谷明月 《Agricultural Science & Technology》 CAS 2017年第11期2163-2167,2178,共6页
In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six ... In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six greenhouses was calculated according to annual average precipitation 542.2 mm, up to 1 095.7 m^3. The upper natural slopes of cultivated land were as rainwater harvesting areas, and total annual rainwater harvesting amount was 49 242 m^3 on the mountain slopes with an area of 73.37 hm^2, while total water storage amount was 39 394 m^3 in theory, so it could meet water use for the irrigation of 26.28 hm^2 of T. sinensis land. To be convenient for rainwater harvesting, irrigation and supplying water to the water-saving cellars, one pert-cut and part-fill reservoir (which was 470 m^3 in volume) was built on the mountain slopes at the right rear of the greenhouses, and their altitude difference was 50 m. The reservoir was sealed and was built with reinforced concrete. Water-saving cellars were distributed in front and the middle and at the back of two rows of greenhouses, and they were connected with each other. The reservoir could supply water to the water-saving cellars and also collect water by mountain slopes, from the lower water-saving cellars or deep wells. Two rainwater hervesting ditches that were 1 650 m in length were at the lower edge of arable land in the upper reaches of slopes to intercept rainfall runoff and make it flow into channels and then the sedimentation tanks. The total annual rainwater harvesting amount of the reservoir and water-saving cellars was 1 222.5 m^3. 展开更多
关键词 Toona sinensis in mountain slopes Rainwater harvesting and water-saving irrigation system Design and construction
下载PDF
The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain 被引量:6
4
作者 ZHAI Li-chao LU Li-hua +4 位作者 DONG Zhi-qiang ZHANG Li-hua ZHANG Jing-ting JIA Xiu-ling ZHANG Zheng-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1687-1700,共14页
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ... The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain. 展开更多
关键词 winter wheat grain yield water use efficiency micro-sprinkling irrigation traditional flooding irrigation water-saving potential
下载PDF
The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA 被引量:19
5
作者 T L Thompson PANG Huan-cheng LI Yu-yi 《Agricultural Sciences in China》 CSCD 2009年第7期850-854,共5页
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa... Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI. 展开更多
关键词 subsurface drip irrigation (SDI) water-saving agriculture western USA
下载PDF
Development Potentials and Benefit Analysis of Efficient Water-saving Irrigation in Lixin County 被引量:2
6
作者 Cheng CAO 《Asian Agricultural Research》 2013年第8期28-31,34,共5页
On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe... On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation. 展开更多
关键词 EFFICIENT water-saving irrigation POTENTIAL Benefi
下载PDF
Cotton's Water Demand and Water-Saving Benefits under Drip Irrigation with Plastic Film Mulch 被引量:2
7
作者 Yingyu YAN Juyan LI 《Asian Agricultural Research》 2016年第4期32-36,41,共6页
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi... The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%. 展开更多
关键词 Cotton’s WATER demand Cotton’s WATER consumption water-saving BENEFITS DRIP irrigation with PLASTIC film MULCH
下载PDF
Study on the Suitable Water-Saving Irrigation Technology for Mining Areas in the Northwestern Arid Desert Regions in China
8
作者 Yanping Liu Hao Rong +1 位作者 Dan Shan Zhanqi Liang 《Journal of Geoscience and Environment Protection》 2020年第10期127-133,共7页
<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mi... <div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mine production and living water demands, we should take measures such as dirt wastewater treatment and water-saving irrigation to increase income and reduce expenditure and allocate limited water re-sources rationally, to provide mining area ecological restoration maximum usable water resources. The mining dump has large slope and thin soil layer and it is easy to produce surface runoff. So it is particularly important to study the irrigation technology needed to satisfy vegetation restoration, on the premise of guaranteeing not to produce surface runoff and the slope stability. In this paper, through field plot test, the suitable irrigation method for mine slope, slope surface soil moisture migration characteristics and slope stability analysis were studied. Results show that three slope ir-rigation technologies have their own advantages and disadvantages. On the whole, the effect of drip irrigation is the best, micro spray irrigation is the second, infiltrating irrigation is not ideal. The permeability of mine soil slope is very strong, the infiltration rate of the slope direction is the high-est, inverse slope infiltration rate is lowest. In the process of irrigation, with the increase of soil moisture content, slope safety factor is the decreased obviously, the whole slope surface soil moisture content is 14% for the slope stability safety threshold. </div> 展开更多
关键词 Mining Areas Vegetation Restoration Side Slope water-saving irrigation STABILITY
下载PDF
Popularization of China's Water-Saving Irrigation equipment
9
《China Today》 2000年第7期50-51,共2页
关键词 Popularization of China’s water-saving irrigation equipment
下载PDF
Influence of Different Irrigation Models and Amounts on Jujube under Jujube-cotton intercropping
10
作者 饶晓娟 王治国 +2 位作者 周勃 冯耀祖 唐亚莉 《Agricultural Science & Technology》 CAS 2013年第9期1328-1331,1351,共5页
[Objective] The aim was to explore the differences of jujube growth by intercropping with cotton and mono-cropping and to research effects of three irrigation models and quantity on jujube. [Method] The field experime... [Objective] The aim was to explore the differences of jujube growth by intercropping with cotton and mono-cropping and to research effects of three irrigation models and quantity on jujube. [Method] The field experiment with three factors and two levels were applied for the study in order to research the effect of all treatments with the yield, quality, bearing branch, flower, fruit diameter of jujube. [Result]With different irrigation patterns, the result of comparing the length of bearing branch was drip irrigation furrow irrigation micro spray, and the result of comparing the number of bearing branch, the bud number, the flower number, fruit diameter was the same, as follows: drip irrigation microjet irrigation furrow irrigation; the result of comparing the yield was drip irrigation furrow irrigation microjet irrigation with significant differences. With different irrigation quantities, high irrigation water quantity treatment was proved higher than low irrigation quantity treatment in every survey index. [Conclusion] The analysis indicates that drip irrigation, microjet irrigation and furrow irrigation increased the irrigation water quantity can significantly promote the growth and the yield of jujube and the effects of the three kinds of irrigation patterns are drip irrigation furrow irrigation microjet irrigation. 展开更多
关键词 Jujube-cotton intercropping irrigation mode irrigation water Agronomic trait
下载PDF
Effects of drip irrigation modes on growth and physiological characteristics of Arabica coffee under different N levels 被引量:3
11
作者 HAO Kun LIU Xiaogang +4 位作者 HAN Zhihui WU Helin YU Ning LIU Yanwei YANG Qiliang 《排灌机械工程学报》 EI CSCD 北大核心 2017年第10期912-920,共9页
The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI)... The objective of this study was to obtain the water-saving and efficient production mode of Arabica coffee. The effects of three drip irrigation modes,conventional drip irrigation( CDI),alternate drip irrigation( ADI) and fixed drip irrigation( FDI) on growth,photosynthetic characteristics,biomass accumulation and irrigation water use efficiency of Arabica coffee were investigated under three nitrogen levels,high nitrogen( NH),middle nitrogen( NM) and low nitrogen( NL). The results show that there was a significant Logistic curve between the plant height,the stem diameter of Arabica coffee and growth days. Compared with CDI,ADI had no significant effects on leaf net photosynthetic rate,stomatal conductance,instantaneous water use efficiency and biomass accumulation above ground of Arabica coffee,while FDI decreased significantly,ADI and FDI increased irrigation water use efficiency by 50. 59% and 32. 85%,respectively. Compared with NH,with the reduction of N application rate,net photosynthetic rate,stomatal conductance,biomass accumulation above ground and irrigation water use efficiency decreased by 6. 81%-12. 30%,13. 70%-22. 69%,9. 61%-16. 67% and 9. 78%-15. 64%,respectively. Compared with CDINH,ADINHdecreased net photosynthesis rate and the stomatal conductance not significantly,other treatments decreased by 9. 16%-19. 22%,14. 49%-32. 91%,and decreased biomass accumulation above ground by 8. 26%-27. 34% except ADINH,and increased irrigation water use efficiency by 16. 46%-60. 95% except CDINMand CDINL. Therefore,alternate drip irrigation under high N level( ADINH) is the best water and nitrogen coupling mode of young Arabica coffee tree for water efficiency. 展开更多
关键词 Arabica coffee drip irrigation modes nitrogen fertilizer photosynthetic characteristics biomass accumulation irrigation water use efficiency
下载PDF
Research on Management Mode of Small-scale Irrigation Works for Farmland Based on Self-governance
12
作者 Yifan LI Fusheng LIU Shiya SU 《Asian Agricultural Research》 2016年第8期66-68,共3页
The paper analyzes the practical use of management mode of small-scale farmland irrigation works in China,and studies various problems existing in the present management mode.It puts forward a mode named Water-consume... The paper analyzes the practical use of management mode of small-scale farmland irrigation works in China,and studies various problems existing in the present management mode.It puts forward a mode named Water-consumer Association which is the most practical one at present.It points out some rules which must be mastered in solving problems appearing in using this mode. 展开更多
关键词 Farmland irrigation works Management mode Self-governance Water-consumer Association
下载PDF
Effect of irrigation modes on the senescence of hybrid rice after heading
13
作者 MA Yuefang LU Dingzhi Institute of Crop cultivation and breeding,Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China 《Chinese Rice Research Newsletter》 1991年第3期4-5,共2页
The pot experiment was designed to investigate therelationship between the senescence of hybrid riceand the irrigation mode and conducted during1984-1985.There were 30 pots for each treatmentand each pot contained 17.... The pot experiment was designed to investigate therelationship between the senescence of hybrid riceand the irrigation mode and conducted during1984-1985.There were 30 pots for each treatmentand each pot contained 17.5 kg soil.Hybrid riceShanyou 6 was sown on 10 Jun ahd transplanted 展开更多
关键词 Effect of irrigation modes on the senescence of hybrid rice after heading
全文增补中
What determines irrigation efficiency when farmers face extreme weather events? A field survey of the major wheat producing regions in China 被引量:5
14
作者 SONG Chun-xiao Les Oxley MA Heng-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第8期1888-1899,共12页
Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates ir... Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates irrigation efficiency with a translog stochastic frontier production function and then investigates what happens when extreme weather events occur via a Tobit model. The estimated results reveal several important features of irrigation practices: i) irrigation efficiency is lower when extreme weather events occur; ii) large variations in irrigation efficiency occur across irrigation facilities; iii) the farm plots exhibit an extreme distribution across efficiency levels; and iv) water-saving techniques, technology adoption, and the maintenance of farmers’ economic resilience are major determinants of irrigation efficiency. Based on these results we propose the following recommendations: i) farmers should balance crop yield and water use; undertake relevant training programs and adopt water-saving techniques; ii) local governments and researchers should help farmers to find the optimal level of irrigation water use based on their own circumstances and provide better water-saving techniques and training programs rather than simply encouraging farmers to invest in irrigation facilities in the most extreme weather years; and iii) the income level of farm households should be increased so as to improve their resilience to natural disasters. 展开更多
关键词 irrigation efficiency determinants irrigation facilities water-saving techniques extreme weather events
下载PDF
Effects of arrangement of surge-root irrigation emitters on growth,yield and water use efficiency of apple trees 被引量:5
15
作者 LI Zhongjie FEI Liangjun +4 位作者 HAO Kun LIU Teng CHEN Nanshu ZHANG Quanju HUANG Deliang 《排灌机械工程学报》 EI CSCD 北大核心 2020年第7期713-719,共7页
Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried ... Six-year old apple trees were selected for field experiment.The objective of this study was to obtain the reasonable arrangement of surge-root irrigation emitters in apple orchards.There were three factors:the buried depth H(25,40,55 cm),the horizontal distance L(30,40,60 cm)between the emitters and the trunk of the experimental tree,and the number of the irrigation emitters N(1,2,4).The effect of the arrangement of surge-root irrigation emitters on the growth,yield and irrigation water use efficiency(IWUE)of apple trees were studied in Northern Shaanxi where the irrigation quota takes 60%-75%of the field water capacity.The results showed that the arrangement of emitters for surge-root irrigation had a significant effect on apple tree yield and IWUE,especially,the yield and IWUE reached 28388.17 kg/hm2 and 16.83 kg/m3 in treatment T3,respectively.At the same L and N levels(T1,T2,and T3),the yield and IWUE in treatment T3 were the highest,and the yields in treatments T1 and T2 were decreased by 26.22%and 31.48%,while IWUE is reduced by14.02%and 18.12%compared with T3,respectively.At the same H and N levels(T3,T4,and T5),the yield and IWUE of apple trees were decreased with increasing L level.Especially,when L was 30 cm(T3),the yield and IWUE were the highest.The same L and H levels(T3,T6,and T7)could promote the growth of apple trees when N was 2(T3).Compared with treatment T3,it was found that the increment of new shoots was decreased by 8.07%-18.71%,and the fruit diameter was decreased by 5.41%-9.11%.Therefore,two emitters should be arranged symmetrically on both sides of an apple tree,each was buried at a 40 cm depth and 30 cm away from the trunk of the tree to effectively improve the yield and IWUE of the apple tree in mountainous areas in Northern Shaanxi. 展开更多
关键词 irrigation emitters surge-root irrigation apple trees arrangement modes YIELD irrigation water use efficiency
下载PDF
Effect of Different Irrigation Patterns on Transportation and Allocation of Carbohydrate During Grain Filling of Rice 被引量:2
16
作者 CHENHai-sheng TAOLong-xing WANGXi HUANGXiao-lin TANHui-juan CHENGShi-hua MINShao-kai 《Agricultural Sciences in China》 CAS CSCD 2005年第3期181-186,共6页
Using intersubspecific hybrid rice Xieyou 9308 and Liangyou Peijiu as the tested materials, the effects of differentirrigation patterns on transportation and allocation of carbohydrate during grain filling stage was o... Using intersubspecific hybrid rice Xieyou 9308 and Liangyou Peijiu as the tested materials, the effects of differentirrigation patterns on transportation and allocation of carbohydrate during grain filling stage was observed by the designwith three level of soil water content in irrigated field. The results showed that in the conventional flooding and thealternate dry-watering cultivations, the exported rate of stored carbohydrate from stem and photophate from the leaves were60 and 90 % respectively. The exported rate of carbohydrate was decreased significantly (P<0.01) in the non-floodingcultivation. There was no significant difference between the conventional flooding and dry-wet alternation treatments interm of the exported rate of carbohydrate. The filling grains were the major sinks for carbohydrate storage during grainfilling stage. Grains received nearly 50% of stored carbohydrate from leaf sheath and 80% of photophate from leaves. Atthe nonflooding condition the absorbing rates of grains were significantly decreased by 10 % from leaf sheath and 20 %from leaves photophate. Water stress leaded much decrease in absorbing ability for inferior grains, which might be one ofthe main causes for low seed-settling rate in non-flooding cultivation. 展开更多
关键词 RICE Grain filling stage irrigation mode GRAIN Photophate
下载PDF
Non-negligible factors in low-pressure sprinkler irrigation:droplet impact angle and shear stress
17
作者 HUI Xin ZHENG Yudong +2 位作者 MUHAMMAD Rizwan Shoukat TAN Haibin YAN Haijun 《Journal of Arid Land》 SCIE CSCD 2022年第11期1293-1316,共24页
Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ... Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ignored.In this study,radial distribution of droplet impact angles,velocities,and shear stresses were investigated using a two-dimensional video disdrometer with three types of low-pressure sprinkler(Nelson D3000,R3000,and Komet KPT)under two operating pressures(103 and 138 kPa)and three nozzle diameters(3.97,5.95,and 7.94 mm).Furthermore,the relationships among these characteristical parameters of droplet were analyzed,and their influencing factors were comprehensively evaluated.For various types of sprinkler,operating pressures,and nozzle diameters,the smaller impact angles and larger velocities of droplets were found to occur closer to the sprinkler,resulting in relatively low droplet shear stresses.The increase in distance from the sprinkler caused the droplet impact angle to decrease and velocity to increase,which contributed to a significant increase in the shear stress that reached the peak value at the end of the jet.Therefore,the end of the jet was the most prone to soil erosion in the radial direction,and the soil erosion in sprinkler irrigation could not only be attributed to the droplet kinetic energy,but also needed to be combined with the analysis of its shear stress.Through comparing the radial distributions of average droplet shear stresses among the three types of sprinklers,D3000 exhibited the largest value(26.94-3313.51 N/m^(2)),followed by R3000(33.34-2650.80 N/m^(2)),and KPT(16.15-2485.69 N/m^(2)).From the perspective of minimizing the risk of soil erosion,KPT sprinkler was more suitable for low-pressure sprinkler irrigation than D3000 and R3000 sprinklers.In addition to selecting the appropriate sprinkler type to reduce the droplet shear stress,a suitable sprinkler spacing could also provide acceptable results,because the distance from the sprinkler exhibited a highly significant(P<0.01)effect on the shear stress.This study results provide a new reference for the design of low-pressure sprinkler irrigation system. 展开更多
关键词 center pivot irrigation system water droplet universal model soil erosion water-saving irrigation
下载PDF
Efficient Water-Saving Irrigation,Space Efficiency and Agricultural Development——Study Based on Spatial Stochastic Frontier Model
18
作者 HAN Aihua HUANG Jian +1 位作者 WANG Xin ZHU Zhengyuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第6期2559-2579,共21页
Xinjiang's agriculture is a typical irrigated agriculture for its agriculture water consumption accounts for 96%of the total water use.As a typical resource-deficient area,the key to Xinjiang's agricultural de... Xinjiang's agriculture is a typical irrigated agriculture for its agriculture water consumption accounts for 96%of the total water use.As a typical resource-deficient area,the key to Xinjiang's agricultural development is saving water.This paper takes the high-efficient water-saving irrigation technology of 41 regions along the Tarim River from 2002 to 2013 as the research object,adopts spatial stochastic frontier model to measure the space efficiency of high-efficient water-saving irrigation technology,and analyzes the effect of water-saving irrigation technology on agricultural development.Results show that the water-saving irrigation technology has a spatial effect,if neglecting it,the error of missing variables will occur,and the average loss will be 6.98 percentage points.The spatial correlation effect promotes the improvement of the efficiency of water-saving irrigation technology.The spatial heterogeneity leads to the spatial imbalance of the efficiency of water-saving irrigation technology.The promotion of agricultural water-saving irrigation technology can increase production and the efficiency of agricultural development.Due to the technical heterogeneity of different types of water-saving irrigation technology,the contribution to the development of agriculture is also different.The study finds that water-saving irrigation technology of drip irrigation in the Tarim River contributes more to agricultural development. 展开更多
关键词 Spatial stochastic frontier model Tarim river basin water-saving irrigation
原文传递
Optimizing water-saving irrigation schemes for rice(Oryza sativa L.)using DSSAT-CERES-Rice model
19
作者 Shikai Gao Qiongqiong Gu +3 位作者 Xuewen Gong Yanbin Li Shaofeng Yan Yuanyuan Li 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第2期142-151,共10页
Rice is one of the major crops in China,and enhancing the rice yield and water use efficiency is critical to ensuring food security in China.Determining how to optimize a scientific and efficient irrigation and draina... Rice is one of the major crops in China,and enhancing the rice yield and water use efficiency is critical to ensuring food security in China.Determining how to optimize a scientific and efficient irrigation and drainage scheme by combining existing technology is currently a hot topic.Crop growth models can be used to assess actual or proposed water management regimes intended to increase water use efficiency and mitigate water shortages.In this study,a CERES-Rice model was calibrated and validated using a two-year field experiment.Four irrigation and drainage treatments were designed for the experiment:alternate wetting and drying(AWD),controlled drainage(CD),controlled irrigation and drainage for a low water level(CID1),and controlled irrigation and drainage for a high water level(CID2).According to the indicators normalized root mean square error(NRMSE)and index of agreement(d),the calibrated CERES-Rice model accurately predicted grain yield(NRMSE=6.67%,d=0.77),,shoot biomass(NRMSE=3.37%,d=0.77),actual evapotranspiration(ETa)(NRMSE=3.83%,d=0.74),irrigation volume(NRMSE=15.56%,d=0.94),and leaf area index(NRMSE=9.69%,d=0.98)over 2 a.The calibrated model was subsequently used to evaluate rice production in response to the four treatments(AWD,CD,CID1,and CID2)under 60 meteorological scenarios which were divided into wet years(22 a),normal years(16 a),and dry years(22 a).Results showed that the yield of AWD was the largest among four treatments in different hydrological years.Relative to that of AWD,the yield of CD,CID1,and CID2 were respectively reduced by 5.7%,2.6%,8.7%in wet years,9.2%,2.3%,8.6% in normal years,and 9.2%,3.8%,3.9% in dry years.However,rainwater use efficiency and irrigation water use efficiency were the greatest for CID2 in different hydrological years.The entropy-weighting TOPSIS model was used to optimize the four water-saving irrigation schemes in terms of water-saving,labor-saving and high-yield,based on the simulation results of the CERES-Rice model in the past 60 a.These results showed that CID1 and AWD were optimal in the wet years,CID1 and CID2 were optimal in the normal and dry years.These results may provide a strong scientific basis for the optimization of water-saving irrigation technology for rice. 展开更多
关键词 CERES-Rice controlled irrigation and drainage water-saving long-term weather data water use efficiency
原文传递
Water-Saving and High-Yielding Irrigation for Lowland Rice by Controlling Limiting Values of Soil Water Potential 被引量:48
20
作者 Jianchang Yang Kai Liu +2 位作者 Zhiqin Wang Yong Du Jianhua Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第10期1445-1454,共10页
The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland ... The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland rice (Oryza sativa L.). Using two field-grown rice cultivars, two irrigation systems; conventional irrigation and water-saving irrigation, were conducted. In the water-saving irrigation system, limiting values of soil water potential related to specific growth stages were proposed as irrigation indices. Compared with conventional irrigation where drainage was in mid-season and flooded at other times, the water-saving irrigation increased grain yield by 7.4% to 11.3%, reduced irrigation water by 24.5% to 29.2%, and increased water productivity (grain yield per cubic meter of irrigation water) by 43.1% to 50.3%. The water-saving irrigation significantly increased harvest index, improved milling and appearance qualities, elevated zeatin-I-zeaUn riboside concentrations in root bleedings and enhanced activities of sucrose synthase, adenosine diphosphate glucose pyrophosphorylase, starch synthase and starch branching enzyme in grains. Our results indicate that water-saving irrigation by controlling limiting values of soil water potential related to specific growth stages can enhance physiological activities of roots and grains, reduce water input, and increase grain yield. 展开更多
关键词 CYTOKININ RICE soil water potential starch synthase water productivity water-saving irrigation.
原文传递
上一页 1 2 27 下一页 到第
使用帮助 返回顶部