期刊文献+
共找到80篇文章
< 1 2 4 >
每页显示 20 50 100
Characteristics and Functions of Cooperative Economic Organizations for Water-saving Irrigation in Agricultural Development in Arid Areas 被引量:4
1
作者 吴开波 朱美玲 +1 位作者 董新光 李金 《Agricultural Science & Technology》 CAS 2011年第12期1979-1982,共4页
Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irr... Agricultural cooperative economic organization for water-saving irrigation in arid areas is a new form of economic organization in production,operation and management during the application process of water-saving irrigation technologies.Currently,there are few researches on this cooperative economic organization.In this study,connotations of cooperative economic organizations for water-saving irrigation are specifically defined,and the characteristics and functions of this cooperative economic organization are analyzed.Based on that,several suggestions are proposed on the continuous development of cooperative economic organizations for water-saving irrigation. 展开更多
关键词 Cooperative economic organizations water-saving irrigation CHARACTERISTICS FUNCTIONS
下载PDF
Application of Automatic Water-saving Irrigation System in Roof Gardens 被引量:1
2
作者 周炼 张美 《Journal of Landscape Research》 2009年第4期75-79,共5页
Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-sa... Based on the special site conditions of roof gardens,it was put forward to introduce automatic water-saving irrigation system into the roof garden constructions,such as the solar energy and microcomputer auto water-saving irrigation system,aiming to solve the photosynthetic noon break phenomenon of plants and relieve the stress from high temperature. 展开更多
关键词 AUTOMATIC irrigation water-saving irrigation ROOF GARDEN
下载PDF
Design and Construction of Rainwater Harvesting and Water-saving Irrigation System of Toona sinensis on Mountain Slopes 被引量:1
3
作者 尹庆珍 谷成铜 +1 位作者 张立永 谷明月 《Agricultural Science & Technology》 CAS 2017年第11期2163-2167,2178,共6页
In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six ... In order to collect rainwater and resist drought to enhance the utilization rate of rainfall and water resources, through project rainwater harvesting measures, the total annual rainwater harvesting amount of the six greenhouses was calculated according to annual average precipitation 542.2 mm, up to 1 095.7 m^3. The upper natural slopes of cultivated land were as rainwater harvesting areas, and total annual rainwater harvesting amount was 49 242 m^3 on the mountain slopes with an area of 73.37 hm^2, while total water storage amount was 39 394 m^3 in theory, so it could meet water use for the irrigation of 26.28 hm^2 of T. sinensis land. To be convenient for rainwater harvesting, irrigation and supplying water to the water-saving cellars, one pert-cut and part-fill reservoir (which was 470 m^3 in volume) was built on the mountain slopes at the right rear of the greenhouses, and their altitude difference was 50 m. The reservoir was sealed and was built with reinforced concrete. Water-saving cellars were distributed in front and the middle and at the back of two rows of greenhouses, and they were connected with each other. The reservoir could supply water to the water-saving cellars and also collect water by mountain slopes, from the lower water-saving cellars or deep wells. Two rainwater hervesting ditches that were 1 650 m in length were at the lower edge of arable land in the upper reaches of slopes to intercept rainfall runoff and make it flow into channels and then the sedimentation tanks. The total annual rainwater harvesting amount of the reservoir and water-saving cellars was 1 222.5 m^3. 展开更多
关键词 Toona sinensis in mountain slopes Rainwater harvesting and water-saving irrigation system Design and construction
下载PDF
The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain 被引量:6
4
作者 ZHAI Li-chao LU Li-hua +4 位作者 DONG Zhi-qiang ZHANG Li-hua ZHANG Jing-ting JIA Xiu-ling ZHANG Zheng-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1687-1700,共14页
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ... The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain. 展开更多
关键词 winter wheat grain yield water use efficiency micro-sprinkling irrigation traditional flooding irrigation water-saving potential
下载PDF
The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA 被引量:19
5
作者 T L Thompson PANG Huan-cheng LI Yu-yi 《Agricultural Sciences in China》 CSCD 2009年第7期850-854,共5页
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa... Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI. 展开更多
关键词 subsurface drip irrigation (SDI) water-saving agriculture western USA
下载PDF
Development Potentials and Benefit Analysis of Efficient Water-saving Irrigation in Lixin County 被引量:2
6
作者 Cheng CAO 《Asian Agricultural Research》 2013年第8期28-31,34,共5页
On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe... On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation. 展开更多
关键词 EFFICIENT water-saving irrigation POTENTIAL Benefi
下载PDF
Cotton's Water Demand and Water-Saving Benefits under Drip Irrigation with Plastic Film Mulch 被引量:2
7
作者 Yingyu YAN Juyan LI 《Asian Agricultural Research》 2016年第4期32-36,41,共6页
The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Fi... The primary purpose of this research was to give suitable irrigation program according to the growth period and water requirement.A cotton field experiment with mulched drip irrigation was conducted at the National Field Observation and Research Station for Oasis Farmland Ecosystem in Aksu of Xinjiang in 2008.Water balance method was adopted to study the water requirement and water consumption law of cotton under mulched drip irrigation in Tarim Irrigated Area.Statistical analysis of experimental data of irrigation indicates that the relationship between yield of cotton and irrigation presents a quadratic parabola.We fit the model of cotton water production on the basis of field experimental data of cotton.And the analysis on water saving benefit of cotton under mulched drip irrigation was done.Results indicate that water requirements for the irrigated cotton are 543 mm in Tarim Irrigated Area.The water requirements of seedling stage is 252 mm,budding stage is 186 mm,bolling stage is 316 mm and wadding stage is 139 mm.the irrigation amount determines the spatial distribution of soil moisture and water consumption during cotton life cycle.However,water consumption at different growth stages was inconsistent with irrigation.Quantitatively,the water consumed by cotton decreases upon the increase of irrigation amount.From the perspective of water saving,the maximal water use efficiency can reach 3 091 m3/ha.But the highest cotton yield needs 3464 m3/ha irrigation water.In summary,compared to the conventional drip irrigation,a number of benefits in water saving and yield increase were observed when using plastic mulch.At the same amount of irrigation,the cotton yield with plastic mulch was 30.2% higher than conventional approaches,and the efficiency of water utilization increased by30.2%.While at the same yield level,29.3% water was saved by using plastic mulch,and the efficiency increased by 41.5%. 展开更多
关键词 Cotton’s WATER demand Cotton’s WATER consumption water-saving BENEFITS DRIP irrigation with PLASTIC film MULCH
下载PDF
Ecosystem Service Value of Jingtaichuan Electric Power Irrigation Engineering
8
作者 Zhao Jianlin Dong Zhiyang 《Meteorological and Environmental Research》 CAS 2019年第2期33-40,共8页
The ecosystem service value of Jingtaichuan electric power irrigation engineering( referred to as Jingdian engineering) was divided into internal value( the value of farmland system,shelter forest system outside of fa... The ecosystem service value of Jingtaichuan electric power irrigation engineering( referred to as Jingdian engineering) was divided into internal value( the value of farmland system,shelter forest system outside of farmland and wetland waters) and external value( the ecological service value of ecological migration to the vegetation restoration of the Qilian Mountains) firstly,and then it was analyzed by using the model method and the factor equivalent method. The results showed that the internal ecological service value of Jingdian engineering was 36. 3 ×10~8 yuan,which was 25. 0 times larger than the total annual cost. The external ecological service value was 40. 05 ×10~8 yuan,which was 27. 6 times larger than the total annual cost. Among the three functional systems,the ecological service value of farmland system was the largest. The ecological service value of farmland system was mainly reflected in waste disposal,wind prevention and sand fixation,and food production. The external ecological service value was mainly the ecological service value of migration to vegetation restoration in the Qilian Mountains. Jingdian engineering is the only highlifting project that raises water to the desert in China. It transfers water from outer basins to control desertification and provides a successful road for ecological migration and desertification control in arid areas. 展开更多
关键词 irrigation area ECOSYSTEM ECOLOGICAL MIGRATION ECOSYSTEM service value Jingtaichuan electric power irrigation ENGINEERING
下载PDF
Study on the Suitable Water-Saving Irrigation Technology for Mining Areas in the Northwestern Arid Desert Regions in China
9
作者 Yanping Liu Hao Rong +1 位作者 Dan Shan Zhanqi Liang 《Journal of Geoscience and Environment Protection》 2020年第10期127-133,共7页
<div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mi... <div style="text-align:justify;"> Water is the key factor to ensure plant survival in the process of ecological restoration in the coal base of China northwest deserts. On the premise of meeting the mine production and living water demands, we should take measures such as dirt wastewater treatment and water-saving irrigation to increase income and reduce expenditure and allocate limited water re-sources rationally, to provide mining area ecological restoration maximum usable water resources. The mining dump has large slope and thin soil layer and it is easy to produce surface runoff. So it is particularly important to study the irrigation technology needed to satisfy vegetation restoration, on the premise of guaranteeing not to produce surface runoff and the slope stability. In this paper, through field plot test, the suitable irrigation method for mine slope, slope surface soil moisture migration characteristics and slope stability analysis were studied. Results show that three slope ir-rigation technologies have their own advantages and disadvantages. On the whole, the effect of drip irrigation is the best, micro spray irrigation is the second, infiltrating irrigation is not ideal. The permeability of mine soil slope is very strong, the infiltration rate of the slope direction is the high-est, inverse slope infiltration rate is lowest. In the process of irrigation, with the increase of soil moisture content, slope safety factor is the decreased obviously, the whole slope surface soil moisture content is 14% for the slope stability safety threshold. </div> 展开更多
关键词 Mining Areas Vegetation Restoration Side Slope water-saving irrigation STABILITY
下载PDF
Popularization of China's Water-Saving Irrigation equipment
10
《China Today》 2000年第7期50-51,共2页
关键词 Popularization of China’s water-saving irrigation equipment
下载PDF
The Assessment of Soil Quality in the Irrigated Area in the Perimeter Low-Service of Doukkala for the Two Lockers Sidi Bennour and Sidi S’mail in Morocco
11
作者 Kaoutar Doumali Khalid Ibno Namr 《Journal of Life Sciences》 2018年第4期195-201,共7页
The Doukkala-Abda region covers an area of about 13,285 km^2 representing 1.87%of Morocco.The agricultural area is 428,000 ha of which 96,000 ha of large irrigation schemes,8,250 ha of private irrigation in coastal ar... The Doukkala-Abda region covers an area of about 13,285 km^2 representing 1.87%of Morocco.The agricultural area is 428,000 ha of which 96,000 ha of large irrigation schemes,8,250 ha of private irrigation in coastal areas and 327,800 ha of rainfed agriculture.The two large irrigation perimeters of Doukkala are the low-service with an area of 61,000 ha and the high service with an area of 35,000 ha.Since the implementation of irrigation perimeter down service Doukkala,he experienced an imbalance both in the ground and water.At first,the state of the quality of soil Doukkala is not alarming.However,observation and comparison of test results between soils in different years seem significant on the evolution of soil quality parameters(organic matter,Phosphorus olsen,pH and salinity)under intensive farming practices.Practical measures for rehabilitation and prevention are to be taken immediately in order to identify these problems and prevent them from degeneration.The methodology for the realization of this work consists of sampling,measurements in situ and analysis of soil quality parameters.The analyses reveal that the soils of Doukkala are poor in organic matter and very rich in phosphorus,with an alarming rate of salinity evolution comparing the results of different years which must be taken into account to prevent the problem from occurring spread and preserve the soil. 展开更多
关键词 LOW service IMBALANCE irrigation DEGENERATION quality
下载PDF
What determines irrigation efficiency when farmers face extreme weather events? A field survey of the major wheat producing regions in China 被引量:5
12
作者 SONG Chun-xiao Les Oxley MA Heng-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第8期1888-1899,共12页
Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates ir... Water availability is a major constraint on grain production in China, therefore, improving irrigation efficiency is particularly important when agriculture faces extreme weather events. This paper first calculates irrigation efficiency with a translog stochastic frontier production function and then investigates what happens when extreme weather events occur via a Tobit model. The estimated results reveal several important features of irrigation practices: i) irrigation efficiency is lower when extreme weather events occur; ii) large variations in irrigation efficiency occur across irrigation facilities; iii) the farm plots exhibit an extreme distribution across efficiency levels; and iv) water-saving techniques, technology adoption, and the maintenance of farmers’ economic resilience are major determinants of irrigation efficiency. Based on these results we propose the following recommendations: i) farmers should balance crop yield and water use; undertake relevant training programs and adopt water-saving techniques; ii) local governments and researchers should help farmers to find the optimal level of irrigation water use based on their own circumstances and provide better water-saving techniques and training programs rather than simply encouraging farmers to invest in irrigation facilities in the most extreme weather years; and iii) the income level of farm households should be increased so as to improve their resilience to natural disasters. 展开更多
关键词 irrigation efficiency determinants irrigation facilities water-saving techniques extreme weather events
下载PDF
Non-negligible factors in low-pressure sprinkler irrigation:droplet impact angle and shear stress
13
作者 HUI Xin ZHENG Yudong +2 位作者 MUHAMMAD Rizwan Shoukat TAN Haibin YAN Haijun 《Journal of Arid Land》 SCIE CSCD 2022年第11期1293-1316,共24页
Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ... Droplet shear stress is considered as an important indicator that reflects soil erosion in sprinkler irrigation more accurately than kinetic energy,and the effect of droplet impact angle on the shear stress cannot be ignored.In this study,radial distribution of droplet impact angles,velocities,and shear stresses were investigated using a two-dimensional video disdrometer with three types of low-pressure sprinkler(Nelson D3000,R3000,and Komet KPT)under two operating pressures(103 and 138 kPa)and three nozzle diameters(3.97,5.95,and 7.94 mm).Furthermore,the relationships among these characteristical parameters of droplet were analyzed,and their influencing factors were comprehensively evaluated.For various types of sprinkler,operating pressures,and nozzle diameters,the smaller impact angles and larger velocities of droplets were found to occur closer to the sprinkler,resulting in relatively low droplet shear stresses.The increase in distance from the sprinkler caused the droplet impact angle to decrease and velocity to increase,which contributed to a significant increase in the shear stress that reached the peak value at the end of the jet.Therefore,the end of the jet was the most prone to soil erosion in the radial direction,and the soil erosion in sprinkler irrigation could not only be attributed to the droplet kinetic energy,but also needed to be combined with the analysis of its shear stress.Through comparing the radial distributions of average droplet shear stresses among the three types of sprinklers,D3000 exhibited the largest value(26.94-3313.51 N/m^(2)),followed by R3000(33.34-2650.80 N/m^(2)),and KPT(16.15-2485.69 N/m^(2)).From the perspective of minimizing the risk of soil erosion,KPT sprinkler was more suitable for low-pressure sprinkler irrigation than D3000 and R3000 sprinklers.In addition to selecting the appropriate sprinkler type to reduce the droplet shear stress,a suitable sprinkler spacing could also provide acceptable results,because the distance from the sprinkler exhibited a highly significant(P<0.01)effect on the shear stress.This study results provide a new reference for the design of low-pressure sprinkler irrigation system. 展开更多
关键词 center pivot irrigation system water droplet universal model soil erosion water-saving irrigation
下载PDF
Optimizing Decentralization of Management andExploitation of Irrigation Works in Quan Lo-Phung HiepRegion, Mekong River Delta
14
作者 Nguyen Due Viet Nguyen Van Tinh +1 位作者 Nguyen Tung Phong Dang Ngoc Hanh 《Journal of Agricultural Science and Technology(A)》 2016年第5期314-323,共10页
In Vietnam as well as many countries which apply the irrigated agriculture over the world, the process of promoting thesocialization trend in irrigation for the basic irrigation organizations, of which the main factor... In Vietnam as well as many countries which apply the irrigated agriculture over the world, the process of promoting thesocialization trend in irrigation for the basic irrigation organizations, of which the main factor is water users, is very important. Thispaper aimed to optimize the decentralization of management and exploitation of irrigation works for water users, organizations inQuan Lo-Phung Hiep irrigation system of Mekong River Delta. The research has implemented a survey on 384 water users alongfour canals of level 2 of Quan Lo-Phung Hiep irrigation system under two sets of index: (1) water users' perception assessment of theirrigation works (14 indicators) and (2) assessment of the management efficiency in the irrigation works (six indicators). Theresearch proposes the decentralization process from building, After determining the correlation coefficients, the multi-objective linearregression equation will be shown on six single objective functions. With the aim at achieving the highest efficiency in themanagement and exploitation of the irrigation works, there should be a shift in terms of the water users' perception of the irrigationworks. These study results also demonstrate that about 65%-68% of the change in the indicators of the exploitation efficiency in theirrigation works is explained by some water users' perception indexes of irrigation works, including the quality of irrigation service andthe output efficiency in agricultural production. By using the algorithm for multi-objective optimization problem, the optimal results inperception are determined. The input data is generated for the matrix supporting the decision making, and the decentralization ofmanagement and exploitation of irrigation works meets the three criteria, i.e., effectiveness, sustainability and flexibility. 展开更多
关键词 Decentralization irrigation MANAGEMENT and exploitation water user irrigation services Quan Lo-Phung Hiep MekongRiver Delta.
下载PDF
Baseline of the Use of Solar Irrigation Pump in the Niayes Area in Senegal
15
作者 Aminata Sarr Lamine Diop +5 位作者 Ibrahima Diatta Yaye Deffa Wane Ansouma Bodian Sidy Mouhamed Seck Luciano Mateos Nicola Lamaddalena 《Natural Resources》 2021年第5期125-146,共22页
Solar irrigation pumps are considered as an alternative to the use of diesel and electric pumps due to the high cost of energy. These pumps are now increasingly used in the Niayes area. Thus, a more in-depth knowledge... Solar irrigation pumps are considered as an alternative to the use of diesel and electric pumps due to the high cost of energy. These pumps are now increasingly used in the Niayes area. Thus, a more in-depth knowledge about the components of a solar pumping system and their characteristics available on the market as well as prices can be beneficial. This study was conducted to have an idea on the baseline of the use of solar irrigation pumps in this area. To perform this study, surveys were conducted among 12 suppliers and 10 service providers located in Dakar, Thies, Louga and Saint-Louis region and among 53 users located in Potou area which is in Louga region. Results show a wide range of pump brands and characteristics. Brands found were Lorentz, LIKOU, SHIMGE, Grundfos, Solar pump, Feili, Difful, JUQIANG, Solar tech, and Asaman. The pumps’ flow rate varies between 2.5 m<sup>3</sup>/h and 45 m<sup>3</sup>/h, the pressure ranges from 15 m to 160 m and the power is between 0.072 kW and 10 kW. The price of these pumps varies depending on the brand used and their characteristics. In addition, other materials are available, such as panels with power ranging from 80 W to 330 W and electric cables. The price of these components varies according on the type used. Thus, the investment cost for implementation varies between 640 euros (420,000 CFA) and 25,087 euros (16,455,919 CFA). The cost of installation varies between 76.3 euros (50,000 CFA) and 1219.6 euros (800,000 CFA). Concerning maintenance, it is generally free during the warranty period when the equipment is supplied and installed by the same company. However, the cost of maintenance varies between 152.5 euros and 457.4 euros/year or is estimated at 45.7 euro/maintenance after the warranty years. Investigations conducted among users show that farmers in general do not perform pump maintenance due to a lack of knowledge and financial means. Thus, according to farmers, factors that impact pumps operation are the low sunshine that occurs between December and January and the iron in the water and low well discharge. 展开更多
关键词 Solar Pumping System irrigation SUPPLIERS service Providers USERS Niayes Area
下载PDF
Efficient Water-Saving Irrigation,Space Efficiency and Agricultural Development——Study Based on Spatial Stochastic Frontier Model
16
作者 HAN Aihua HUANG Jian +1 位作者 WANG Xin ZHU Zhengyuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第6期2559-2579,共21页
Xinjiang's agriculture is a typical irrigated agriculture for its agriculture water consumption accounts for 96%of the total water use.As a typical resource-deficient area,the key to Xinjiang's agricultural de... Xinjiang's agriculture is a typical irrigated agriculture for its agriculture water consumption accounts for 96%of the total water use.As a typical resource-deficient area,the key to Xinjiang's agricultural development is saving water.This paper takes the high-efficient water-saving irrigation technology of 41 regions along the Tarim River from 2002 to 2013 as the research object,adopts spatial stochastic frontier model to measure the space efficiency of high-efficient water-saving irrigation technology,and analyzes the effect of water-saving irrigation technology on agricultural development.Results show that the water-saving irrigation technology has a spatial effect,if neglecting it,the error of missing variables will occur,and the average loss will be 6.98 percentage points.The spatial correlation effect promotes the improvement of the efficiency of water-saving irrigation technology.The spatial heterogeneity leads to the spatial imbalance of the efficiency of water-saving irrigation technology.The promotion of agricultural water-saving irrigation technology can increase production and the efficiency of agricultural development.Due to the technical heterogeneity of different types of water-saving irrigation technology,the contribution to the development of agriculture is also different.The study finds that water-saving irrigation technology of drip irrigation in the Tarim River contributes more to agricultural development. 展开更多
关键词 Spatial stochastic frontier model Tarim river basin water-saving irrigation
原文传递
Optimizing water-saving irrigation schemes for rice(Oryza sativa L.)using DSSAT-CERES-Rice model
17
作者 Shikai Gao Qiongqiong Gu +3 位作者 Xuewen Gong Yanbin Li Shaofeng Yan Yuanyuan Li 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第2期142-151,共10页
Rice is one of the major crops in China,and enhancing the rice yield and water use efficiency is critical to ensuring food security in China.Determining how to optimize a scientific and efficient irrigation and draina... Rice is one of the major crops in China,and enhancing the rice yield and water use efficiency is critical to ensuring food security in China.Determining how to optimize a scientific and efficient irrigation and drainage scheme by combining existing technology is currently a hot topic.Crop growth models can be used to assess actual or proposed water management regimes intended to increase water use efficiency and mitigate water shortages.In this study,a CERES-Rice model was calibrated and validated using a two-year field experiment.Four irrigation and drainage treatments were designed for the experiment:alternate wetting and drying(AWD),controlled drainage(CD),controlled irrigation and drainage for a low water level(CID1),and controlled irrigation and drainage for a high water level(CID2).According to the indicators normalized root mean square error(NRMSE)and index of agreement(d),the calibrated CERES-Rice model accurately predicted grain yield(NRMSE=6.67%,d=0.77),,shoot biomass(NRMSE=3.37%,d=0.77),actual evapotranspiration(ETa)(NRMSE=3.83%,d=0.74),irrigation volume(NRMSE=15.56%,d=0.94),and leaf area index(NRMSE=9.69%,d=0.98)over 2 a.The calibrated model was subsequently used to evaluate rice production in response to the four treatments(AWD,CD,CID1,and CID2)under 60 meteorological scenarios which were divided into wet years(22 a),normal years(16 a),and dry years(22 a).Results showed that the yield of AWD was the largest among four treatments in different hydrological years.Relative to that of AWD,the yield of CD,CID1,and CID2 were respectively reduced by 5.7%,2.6%,8.7%in wet years,9.2%,2.3%,8.6% in normal years,and 9.2%,3.8%,3.9% in dry years.However,rainwater use efficiency and irrigation water use efficiency were the greatest for CID2 in different hydrological years.The entropy-weighting TOPSIS model was used to optimize the four water-saving irrigation schemes in terms of water-saving,labor-saving and high-yield,based on the simulation results of the CERES-Rice model in the past 60 a.These results showed that CID1 and AWD were optimal in the wet years,CID1 and CID2 were optimal in the normal and dry years.These results may provide a strong scientific basis for the optimization of water-saving irrigation technology for rice. 展开更多
关键词 CERES-Rice controlled irrigation and drainage water-saving long-term weather data water use efficiency
原文传递
Optimization of inter-seasonal nitrogen allocation increases yield and resource-use efficiency in a water-limited wheat-maize cropping system in the North China Plain
18
作者 Xiaonan Zhou Chenghang Du +7 位作者 Haoran Li Zhencai Sun Yifei Chen Zhiqiang Gao Zhigan Zhao Yinghua Zhang Zhimin Wang Ying Liu 《The Crop Journal》 SCIE CSCD 2024年第3期907-914,共8页
Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study ai... Winter wheat–summer maize cropping system in the North China Plain often experiences droughtinduced yield reduction in the wheat season and rainwater and nitrogen(N)fertilizer losses in the maize season.This study aimed to identify an optimal interseasonal water-and N-management strategy to alleviate these losses.Four ratios of allocation of 360 kg N ha^(-1)between the wheat and maize seasons under one-time presowing root-zone irrigation(W0)and additional jointing and anthesis irrigation(W2)in wheat and one irrigation after maize sowing were set as follows:N1(120:240),N2(180:180),N3(240:120)and N4(300:60).The results showed that under W0,the N3 treatment produced the highest annual yield,crop water productivity(WPC),and nitrogen partial factor productivity(PFPN).Increased N allocation in wheat under W0 improved wheat yield without affecting maize yield,as surplus nitrate after wheat harvest was retained in the topsoil layers and available for the subsequent maize.Under W2,annual yield was largest in the N2 treatment.The risk of nitrate leaching increased in W2 when N application rate in wheat exceeded that of the N2 treatment,especially in the wet year.Compared to W2N2,the W0N3 maintained 95.2%grain yield over two years.The WPCwas higher in the W0 treatment than in the W2 treatment.Therefore,following limited total N rate,an appropriate fertilizer N transfer from maize to wheat season had the potential of a“triple win”for high annual yield,WPCand PFPN in a water-limited wheat–maize cropping system. 展开更多
关键词 Cropping system water-saving irrigation North China Plain Nitrogen optimization Sustainable intensification
下载PDF
老龄化、政策激励与农户节水灌溉技术采纳行为
19
作者 陈良 张晓慧 《资源开发与市场》 CAS 2024年第6期874-881,共8页
节水灌溉技术是缓解半干旱区农业用水困境,调整农业生产结构和保障粮食安全的重要方式。基于眉县猕猴桃种植户732份微观调研数据,运用Logistic和Tobit模型,实证分析老龄化、政策激励对农户节水灌溉技术采纳行为的影响。结果表明:(1)老... 节水灌溉技术是缓解半干旱区农业用水困境,调整农业生产结构和保障粮食安全的重要方式。基于眉县猕猴桃种植户732份微观调研数据,运用Logistic和Tobit模型,实证分析老龄化、政策激励对农户节水灌溉技术采纳行为的影响。结果表明:(1)老龄化会对农户节水灌溉技术采纳行为和程度有明显抑制作用,而补贴政策和技术服务对农户节水灌溉技术采纳行为和程度有显著促进作用;(2)补贴政策在老龄化对农户节水灌溉技术采纳行为和采纳程度中都发挥着正向调节作用,而技术服务在老龄化对农户节水灌溉技术采纳行为发挥着正向调节作用,在采纳程度中的调节作用不显著;(3)异质性分析发现,老龄化对现代节水技术采纳行为产生显著负向影响,对传统节水技术采纳行为影响不显著。鉴于政策激励能够缓解老龄化对节水灌溉技术采纳行为带来的不利影响,政府应加大财政补贴政策支持力度、建立健全农业技术服务体系,并加强“政府+企业+农户”三方合作,以促进农户采纳节水灌溉技术。 展开更多
关键词 老龄化 补贴政策 技术服务 政策激励 节水灌溉技术
下载PDF
Water-Saving and High-Yielding Irrigation for Lowland Rice by Controlling Limiting Values of Soil Water Potential 被引量:48
20
作者 Jianchang Yang Kai Liu +2 位作者 Zhiqin Wang Yong Du Jianhua Zhang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第10期1445-1454,共10页
The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland ... The present study investigated whether an irrigation system could be established to save water and increase grain yield to enhance water productivity by proper water management at the field level in irrigated lowland rice (Oryza sativa L.). Using two field-grown rice cultivars, two irrigation systems; conventional irrigation and water-saving irrigation, were conducted. In the water-saving irrigation system, limiting values of soil water potential related to specific growth stages were proposed as irrigation indices. Compared with conventional irrigation where drainage was in mid-season and flooded at other times, the water-saving irrigation increased grain yield by 7.4% to 11.3%, reduced irrigation water by 24.5% to 29.2%, and increased water productivity (grain yield per cubic meter of irrigation water) by 43.1% to 50.3%. The water-saving irrigation significantly increased harvest index, improved milling and appearance qualities, elevated zeatin-I-zeaUn riboside concentrations in root bleedings and enhanced activities of sucrose synthase, adenosine diphosphate glucose pyrophosphorylase, starch synthase and starch branching enzyme in grains. Our results indicate that water-saving irrigation by controlling limiting values of soil water potential related to specific growth stages can enhance physiological activities of roots and grains, reduce water input, and increase grain yield. 展开更多
关键词 CYTOKININ RICE soil water potential starch synthase water productivity water-saving irrigation.
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部