This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received ...This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.展开更多
This study proposes a parametric formation control method for the cooperative observation of the China Space Station(CSS)using multiple nanosatellites.First,a simplified geometrical model of the CSS is constructed usi...This study proposes a parametric formation control method for the cooperative observation of the China Space Station(CSS)using multiple nanosatellites.First,a simplified geometrical model of the CSS is constructed using fundamental solids,such as the capsule body and cuboid.Second,the spacecraft formation configuration for the observation mission is characterized by a three-dimensional(3D)Lissajous curve using related design parameters under the full-coverage observation requirements of specific parts,such as the CSS connecting section and collision avoidance constraints.Third,a double-layer control law is designed for each nanosatellite,in which the upper layer is a distributed observer for recognizing the target formation configuration parameters,and the lower layer is a trajectory-tracking controller to make the nanosatellite converge to its temporary target position calculated from the upper layer’s outputs.The closed-loop control stability is proven under the condition that the communication network topology of the nanosatellite cluster contains a directed spanning tree.Finally,the control method is verified by numerical simulation,where the CSS connecting section is selected as the observation target,and ten small nanosatellites are assumed to perform the cooperative observation mission.The simulation results demonstrate that the double-layer control law is robust to single-point communication failures and suitable for the accompanying missions of large space objects with multiple nanosatellites.展开更多
Although distributed model predictive control has caused significant attention and received many good results, the results are mostly under the assumption that the system states can be observed. However, the states ar...Although distributed model predictive control has caused significant attention and received many good results, the results are mostly under the assumption that the system states can be observed. However, the states are difficult to be observed in practice. In this paper, a novel distributed model predictive control is proposed based on state observer for a kind of linear discrete-time systems where states are not measured. Firstly, an output feedback control law is designed based on Lyapunov function and state observer. And the stability domain is described. Furthermore, the stability domain as a terminal constraint is added into the constraint conditions of the algorithm to make systems stable outside the stability domain. The simulation results show the effectiveness of the proposed method.展开更多
A preliminary account of synthetic aperture radar (SAR) imaging mechanisms of oceanic bottom topographic features and a description of the principles of the information extracted from SAR images and the processing an...A preliminary account of synthetic aperture radar (SAR) imaging mechanisms of oceanic bottom topographic features and a description of the principles of the information extracted from SAR images and the processing and the analysis technology of SAR images are made. Some results were obtained from researching shallow topography and its bathymetric features of the regions of offshore in the east Australia Sea by ERS-1 SAR images. The preliminary research indicates that these features covered with SAR have never been reported before and some results of them are yielded for the first time in Australia. This information is very valuable in a great number of applications to oceanic engineering, shipping navigation, marine fishery and environment, as well as oceanographic research and development. The paper comes to the conclusion that SAR remote sensing of oceanography and its applications are of great potential.展开更多
In this study, boundary control problems with Neumann conditions for 2 × 2 cooperative hyperbolic systems involving infinite order operators are considered. The existence and uniqueness of the states of these sys...In this study, boundary control problems with Neumann conditions for 2 × 2 cooperative hyperbolic systems involving infinite order operators are considered. The existence and uniqueness of the states of these systems are proved, and the formulation of the control problem for different observation functions is discussed.展开更多
In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and suffi...In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and sufficient conditions of optimal control for such systems of the boundary type. We also find the necessary and sufficient conditions of optimal control for same systems when the observation is on the boundary.展开更多
The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed outpu...The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed output feedback control strategy based on the finite-time state observer is designed.This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal,but also make the systems have a faster convergence and a good robustness.The stability of the system in finite time is proved based on Lyapunov function.Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.展开更多
Since the voltage source converter based high voltage direct current(VSC-HVDC)systems owns the features of nonlinearity,strong coupling and multivariable,the classical proportional integral(PI)control is hard to obtai...Since the voltage source converter based high voltage direct current(VSC-HVDC)systems owns the features of nonlinearity,strong coupling and multivariable,the classical proportional integral(PI)control is hard to obtain content control effect.Hence,a new perturbation observer based fractional-order PID(PoFoPID)control strategy is designed in this paper for(VSC-HVDC)systems with offshore wind integration,which can efficiently boost the robustness and control performance of entire system.Particularly,it employs a fractional-order PID(FoPID)fra-mework for the sake of compensating the perturbation estimate,which dramatically boost the dynamical responds of the closed-loop system,and the cooperative beetle antennae search(CBAS)algorithm is adopted to quickly and effi-ciently search its best control parameters.Besides,CBAS algorithm is able to efficiently escape a local optimum because of a suitable trade-off between global exploration and local exploitation can be realized.At last,comprehensive case studies are carried out,namely,active and reactive power tracking,5-cycle line-line-line-ground(LLLG)fault,and offshore wind farm integration.Simulation results validate superiorities and effectiveness of PoFoPID control in com-parison of that of PID control and feedback linearization sliding-mode control(FLSMC),respectively.展开更多
Business negotiation is a delicate art and can be a very trying process of confrontation and concession.Cooperative principle is ac knowledged as a principle of conversation of enhancing the mutual trust and understan...Business negotiation is a delicate art and can be a very trying process of confrontation and concession.Cooperative principle is ac knowledged as a principle of conversation of enhancing the mutual trust and understanding for the purpose of increasing the odd for com munication success.This thesis attempts to highlight the cooperative principle and analyze its inconsistence in business negotiation scenarios.In this paper,whether Cooperative Principle is applicable in business negotiations is the main research question.展开更多
基金supported in part by the National Science Foundation of China(61873335,61833011)the Project of Scie nce and Technology Commission of Shanghai Municipality,China(20ZR1420200,21SQBS01600,19510750300,21190780300)。
文摘This paper is concerned with the cooperative target tracking of multiple autonomous surface vehicles(ASVs)under switching interaction topologies.For the target to be tracked,only its position can be measured/received by some of the ASVs,and its velocity is unavailable to all the ASVs.A distributed extended state observer taking into consideration switching topologies is designed to integrally estimate unknown target dynamics and neighboring ASVs'dynamics.Accordingly,a novel kinematic controller is designed,which takes full advantage of known information and avoids the approximation of some virtual control vectors.Moreover,a disturbance observer is presented to estimate unknown time-varying environmental disturbance.Furthermore,a distributed dynamic controller is designed to regulate the involved ASVs to cooperatively track the target.It enables each ASV to adjust its forces and moments according to the received information from its neighbors.The effectiveness of the derived results is demonstrated through cooperative target tracking performance analysis for a tracking system composed of five interacting ASVs.
基金the National Natural Science Foundation of China(Grant No.12172288)the National Key Basic Research Program of China:Gravitational Wave Detection Project(Grant Nos.2021YFC2202600 and 2021YFC2202603).
文摘This study proposes a parametric formation control method for the cooperative observation of the China Space Station(CSS)using multiple nanosatellites.First,a simplified geometrical model of the CSS is constructed using fundamental solids,such as the capsule body and cuboid.Second,the spacecraft formation configuration for the observation mission is characterized by a three-dimensional(3D)Lissajous curve using related design parameters under the full-coverage observation requirements of specific parts,such as the CSS connecting section and collision avoidance constraints.Third,a double-layer control law is designed for each nanosatellite,in which the upper layer is a distributed observer for recognizing the target formation configuration parameters,and the lower layer is a trajectory-tracking controller to make the nanosatellite converge to its temporary target position calculated from the upper layer’s outputs.The closed-loop control stability is proven under the condition that the communication network topology of the nanosatellite cluster contains a directed spanning tree.Finally,the control method is verified by numerical simulation,where the CSS connecting section is selected as the observation target,and ten small nanosatellites are assumed to perform the cooperative observation mission.The simulation results demonstrate that the double-layer control law is robust to single-point communication failures and suitable for the accompanying missions of large space objects with multiple nanosatellites.
文摘Although distributed model predictive control has caused significant attention and received many good results, the results are mostly under the assumption that the system states can be observed. However, the states are difficult to be observed in practice. In this paper, a novel distributed model predictive control is proposed based on state observer for a kind of linear discrete-time systems where states are not measured. Firstly, an output feedback control law is designed based on Lyapunov function and state observer. And the stability domain is described. Furthermore, the stability domain as a terminal constraint is added into the constraint conditions of the algorithm to make systems stable outside the stability domain. The simulation results show the effectiveness of the proposed method.
文摘A preliminary account of synthetic aperture radar (SAR) imaging mechanisms of oceanic bottom topographic features and a description of the principles of the information extracted from SAR images and the processing and the analysis technology of SAR images are made. Some results were obtained from researching shallow topography and its bathymetric features of the regions of offshore in the east Australia Sea by ERS-1 SAR images. The preliminary research indicates that these features covered with SAR have never been reported before and some results of them are yielded for the first time in Australia. This information is very valuable in a great number of applications to oceanic engineering, shipping navigation, marine fishery and environment, as well as oceanographic research and development. The paper comes to the conclusion that SAR remote sensing of oceanography and its applications are of great potential.
文摘In this study, boundary control problems with Neumann conditions for 2 × 2 cooperative hyperbolic systems involving infinite order operators are considered. The existence and uniqueness of the states of these systems are proved, and the formulation of the control problem for different observation functions is discussed.
文摘In this paper, we consider cooperative hyperbolic systems involving Schr?dinger operator defined on ?Rn. First we prove the existence and uniqueness of the state for these systems. Then we find the necessary and sufficient conditions of optimal control for such systems of the boundary type. We also find the necessary and sufficient conditions of optimal control for same systems when the observation is on the boundary.
基金National Natural Science Foundation of China(No.61663020)National Key R&D Program of China(No.2017YFB1201003-020)Natural Science Foundation of Gansu Province(No.17JR5RA096)
文摘The cooperative output tracking problem of multi-agent systems in finite time is considered.In order to enable the agents to quickly track and converge to external system within a finite time,a novel distributed output feedback control strategy based on the finite-time state observer is designed.This distributed finite-time observer can not only solve cooperative output tracking problems when the agents can not get external system signal,but also make the systems have a faster convergence and a good robustness.The stability of the system in finite time is proved based on Lyapunov function.Numerical simulations results have been provided to demonstrate the effectiveness of the proposed protocol.
基金the National Natural Science Foundation of China(51807085).
文摘Since the voltage source converter based high voltage direct current(VSC-HVDC)systems owns the features of nonlinearity,strong coupling and multivariable,the classical proportional integral(PI)control is hard to obtain content control effect.Hence,a new perturbation observer based fractional-order PID(PoFoPID)control strategy is designed in this paper for(VSC-HVDC)systems with offshore wind integration,which can efficiently boost the robustness and control performance of entire system.Particularly,it employs a fractional-order PID(FoPID)fra-mework for the sake of compensating the perturbation estimate,which dramatically boost the dynamical responds of the closed-loop system,and the cooperative beetle antennae search(CBAS)algorithm is adopted to quickly and effi-ciently search its best control parameters.Besides,CBAS algorithm is able to efficiently escape a local optimum because of a suitable trade-off between global exploration and local exploitation can be realized.At last,comprehensive case studies are carried out,namely,active and reactive power tracking,5-cycle line-line-line-ground(LLLG)fault,and offshore wind farm integration.Simulation results validate superiorities and effectiveness of PoFoPID control in com-parison of that of PID control and feedback linearization sliding-mode control(FLSMC),respectively.
文摘Business negotiation is a delicate art and can be a very trying process of confrontation and concession.Cooperative principle is ac knowledged as a principle of conversation of enhancing the mutual trust and understanding for the purpose of increasing the odd for com munication success.This thesis attempts to highlight the cooperative principle and analyze its inconsistence in business negotiation scenarios.In this paper,whether Cooperative Principle is applicable in business negotiations is the main research question.