Mudstone, as a typical soft rock with wide distribution, has been endangering the slopes containing mudstone by its watersensitivity of swelling and weakening strength when encountering water. To comprehensively under...Mudstone, as a typical soft rock with wide distribution, has been endangering the slopes containing mudstone by its watersensitivity of swelling and weakening strength when encountering water. To comprehensively understand the water-sensitivity of mudstone and reveal its infuence on slope stability, we took the working slope containing water-sensitive mudstone of Shengli No.1 open-pit coal mine in Xilinhot, Inner Mongolia, China, as an example. Mudstone samples taken from the working slope were remodeled and saturated, and then triaxial tested to obtain the efective cohesion and efective internal friction angle. The flter paper method was used to obtain the soil–water characteristic curve of unsaturated mudstone. The pore structure of mudstone samples with diferent water contents were analyzed using the mercury intrusion porosimetry tests combined with the fractal dimension. The total pore content of the mudstone sample with lower water content is greater than that of the mudstone sample with higher water content. The mesopores are more in the mudstone sample with lower water content, while the small pores are more in the mudstone sample with higher water content. The variation of water content will change the complexity of mudstone pore structure. The higher the water content, the simpler the mudstone pore structure and the smoother the pore surface. Numerical calculations were conducted on the stability of the working slope under diferent rainfall conditions. The efective saturation on the mudstone layer surface changed and the plastic strain all occurred on the mudstone steps under diferent rainfall conditions. The key to preventing landslide of the slope containing water-sensitive mudstone in Shengli No.1 open-pit coal mine is to control the deformation and sliding of the mudstone layer.展开更多
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of...This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.展开更多
Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based ...Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.展开更多
Shortly after tunneling,problems such as primary-support through cracks and clearance infringement are found in the shallow-buried section of tunnel No.4 of the Jakarta-Bandung High Speed Railway(Jakarta-Bandung HSR),...Shortly after tunneling,problems such as primary-support through cracks and clearance infringement are found in the shallow-buried section of tunnel No.4 of the Jakarta-Bandung High Speed Railway(Jakarta-Bandung HSR),and orthogonal cracks can be found on the earth surface in front of the working face,which brings great challenges to the tunnel construction.In view of the above engineering problems,the sliding surface is speculated according to the geological and field conditions,and the impact of landslides is applied in the model in the form of external load.The paper uses the numerical simulation method to analyze and compare the impact of landslides on the tunnel structure and deformation,and puts forward the reinforcement measures.The conclusions of the studies are:(1)under the influence of heavy rainfall,the strength index of volcanic deposit clay stratum drops sharply,and meanwhile the multiple factors including tunnel excavation are liable to cause sliding of the front slope;(2)parallel landslide in front of the tunnel has a great impact on the tunnel,so setting-up of pre-reinforcement measures to control landslide shall be the focus of similar projects during design;(3)the deformation and stress of the tunnel structure can be significantly controlled for safe construction by strengthening the shallow-buried tunnel with pile foundation and longitudinal and transverse beam frames during landslide.展开更多
In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation...In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.展开更多
The global mobility theory was used to evaluate the experimental results of oil displacement with water of different salinities.The results of scanning electron microscopy,X diffraction of clay minerals,nonlinear seep...The global mobility theory was used to evaluate the experimental results of oil displacement with water of different salinities.The results of scanning electron microscopy,X diffraction of clay minerals,nonlinear seepage and nuclear magnetic resonance experiments and particle migration inhibition experiments before and after water flooding were compared to determine the mechanisms of water sensitive damage and enhanced water flooding mechanism of low permeability sandy conglomerate reservoirs in Wushi region of Beibuwan Basin,China.A production equation of the oil-water two phase flow well considering low-speed non-Darcy seepage and reservoir stress sensitivity was established to evaluate the effect of changes in reservoir properties and oil-water two-phase seepage capacity on reservoir productivity quantitatively,and injection water source suitable for the low permeability sandy conglomerate reservoirs in Wushi region was selected according to dynamic compatibility experimental results of different types of injected water.The seepage capacity of reservoir is the strongest when the injected water is formation water of 2 times salinity.The water-sensitive damage mechanisms of the reservoirs in Wushi region include hydration of clay minerals and particle migration.By increasing the content of cations(especially K+and Mg2+)in the injected water,the water-sensitive damage of the reservoir can be effectively inhibited.The formation water of Weizhou Formation can be used as the injection water source of low permeability sandy conglomerate reservoirs in the Wushi region.展开更多
Jiang H,Zhu J,Zhang X,Zhang J,Li H,Meng L.Wear mechanism and life prediction of the ripper in a 9‐m‐diameter shield machine tunneling project of the Beijing new airport line in a sand‐pebble stratum.Deep Undergr Sc...Jiang H,Zhu J,Zhang X,Zhang J,Li H,Meng L.Wear mechanism and life prediction of the ripper in a 9‐m‐diameter shield machine tunneling project of the Beijing new airport line in a sand‐pebble stratum.Deep Undergr Sci Eng.2022;1:65‐76.doi:10.1002/dug2.12010.展开更多
Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can sig...Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines.展开更多
基金supported by the National Key R&D Program of China(2022YFC2903902)the National Natural Science Foundation of China(51974295).
文摘Mudstone, as a typical soft rock with wide distribution, has been endangering the slopes containing mudstone by its watersensitivity of swelling and weakening strength when encountering water. To comprehensively understand the water-sensitivity of mudstone and reveal its infuence on slope stability, we took the working slope containing water-sensitive mudstone of Shengli No.1 open-pit coal mine in Xilinhot, Inner Mongolia, China, as an example. Mudstone samples taken from the working slope were remodeled and saturated, and then triaxial tested to obtain the efective cohesion and efective internal friction angle. The flter paper method was used to obtain the soil–water characteristic curve of unsaturated mudstone. The pore structure of mudstone samples with diferent water contents were analyzed using the mercury intrusion porosimetry tests combined with the fractal dimension. The total pore content of the mudstone sample with lower water content is greater than that of the mudstone sample with higher water content. The mesopores are more in the mudstone sample with lower water content, while the small pores are more in the mudstone sample with higher water content. The variation of water content will change the complexity of mudstone pore structure. The higher the water content, the simpler the mudstone pore structure and the smoother the pore surface. Numerical calculations were conducted on the stability of the working slope under diferent rainfall conditions. The efective saturation on the mudstone layer surface changed and the plastic strain all occurred on the mudstone steps under diferent rainfall conditions. The key to preventing landslide of the slope containing water-sensitive mudstone in Shengli No.1 open-pit coal mine is to control the deformation and sliding of the mudstone layer.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51538001 and 51978019).
文摘This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum.
基金the National Natural Science Foundation of China(No.51974042)National Key Research and Development Program of China(No.2023YFC3009005).
文摘Ground hydraulic fracturing plays a crucial role in controlling the far-field hard roof,making it imperative to identify the most suitable target stratum for effective control.Physical experiments are conducted based on engineering properties to simulate the gradual collapse of the roof during longwall top coal caving(LTCC).A numerical model is established using the material point method(MPM)and the strain-softening damage constitutive model according to the structure of the physical model.Numerical simulations are conducted to analyze the LTCC process under different hard roofs for ground hydraulic fracturing.The results show that ground hydraulic fracturing releases the energy and stress of the target stratum,resulting in a substantial lag in the fracturing of the overburden before collapse occurs in the hydraulic fracturing stratum.Ground hydraulic fracturing of a low hard roof reduces the lag effect of hydraulic fractures,dissipates the energy consumed by the fracture of the hard roof,and reduces the abutment stress.Therefore,it is advisable to prioritize the selection of the lower hard roof as the target stratum.
文摘Shortly after tunneling,problems such as primary-support through cracks and clearance infringement are found in the shallow-buried section of tunnel No.4 of the Jakarta-Bandung High Speed Railway(Jakarta-Bandung HSR),and orthogonal cracks can be found on the earth surface in front of the working face,which brings great challenges to the tunnel construction.In view of the above engineering problems,the sliding surface is speculated according to the geological and field conditions,and the impact of landslides is applied in the model in the form of external load.The paper uses the numerical simulation method to analyze and compare the impact of landslides on the tunnel structure and deformation,and puts forward the reinforcement measures.The conclusions of the studies are:(1)under the influence of heavy rainfall,the strength index of volcanic deposit clay stratum drops sharply,and meanwhile the multiple factors including tunnel excavation are liable to cause sliding of the front slope;(2)parallel landslide in front of the tunnel has a great impact on the tunnel,so setting-up of pre-reinforcement measures to control landslide shall be the focus of similar projects during design;(3)the deformation and stress of the tunnel structure can be significantly controlled for safe construction by strengthening the shallow-buried tunnel with pile foundation and longitudinal and transverse beam frames during landslide.
基金supported by the Key Projects of Natural Science Foundation of China(No.41931284)the Scientific Research Start-Up Fund for High-Level Introduced Talents of Anhui University of Science and Technology(No.2022yjrc21).
文摘In the process of using the original key stratum theory to predict the height of a water-flowing fractured zone(WFZ),the influence of rock strata outside the calculation range on the rock strata within the calculation range as well as the fact that the shape of the overburden deformation area will change with the excavation length are ignored.In this paper,an improved key stratum theory(IKS theory)was proposed by fixing these two shortcomings.Then,a WFZ height prediction method based on IKS theory was established and applied.First,the range of overburden involved in the analysis was determined according to the tensile stress distribution range above the goaf.Second,the key stratum in the overburden involved in the analysis was identified through IKS theory.Finally,the tendency of the WFZ to develop upward was determined by judging whether or not the identified key stratum will break.The proposed method was applied and verified in a mining case study,and the reasons for the differences in the development patterns between the WFZs in coalfields in Northwest and East China were also fully explained by this method.
基金Supported by the China National Science and Technology Major Project(2016ZX05024006).
文摘The global mobility theory was used to evaluate the experimental results of oil displacement with water of different salinities.The results of scanning electron microscopy,X diffraction of clay minerals,nonlinear seepage and nuclear magnetic resonance experiments and particle migration inhibition experiments before and after water flooding were compared to determine the mechanisms of water sensitive damage and enhanced water flooding mechanism of low permeability sandy conglomerate reservoirs in Wushi region of Beibuwan Basin,China.A production equation of the oil-water two phase flow well considering low-speed non-Darcy seepage and reservoir stress sensitivity was established to evaluate the effect of changes in reservoir properties and oil-water two-phase seepage capacity on reservoir productivity quantitatively,and injection water source suitable for the low permeability sandy conglomerate reservoirs in Wushi region was selected according to dynamic compatibility experimental results of different types of injected water.The seepage capacity of reservoir is the strongest when the injected water is formation water of 2 times salinity.The water-sensitive damage mechanisms of the reservoirs in Wushi region include hydration of clay minerals and particle migration.By increasing the content of cations(especially K+and Mg2+)in the injected water,the water-sensitive damage of the reservoir can be effectively inhibited.The formation water of Weizhou Formation can be used as the injection water source of low permeability sandy conglomerate reservoirs in the Wushi region.
文摘Jiang H,Zhu J,Zhang X,Zhang J,Li H,Meng L.Wear mechanism and life prediction of the ripper in a 9‐m‐diameter shield machine tunneling project of the Beijing new airport line in a sand‐pebble stratum.Deep Undergr Sci Eng.2022;1:65‐76.doi:10.1002/dug2.12010.
基金supported by the Climbling Project of Taishan Scholar in Shandong Province (No.tspd20210313)National Natural Science Foundation of China (Grant No.51874190,52079068,41941019,52090081 and 52074168)+3 种基金Taishan Scholar in Shandong Province (No.tsqn202211150)Outstanding Youth Fund Project in Shandong Province (No.ZQ2022YQ49)the State Key Laboratory of Hydroscience and Engineering,China (No.2021-KY-04)support from the G.Albert Shoemaker endowment.
文摘Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines.