Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution...Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.展开更多
A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without...A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without the use of a surfactant. The effects of solution properties on the electrospinning of PEO, PAM and PVP solutions were investigated. The viscosity of the solution, charge density carried by the jet, and the surface tension of the solution are the key factors that influence the morphology and diameter size of the fibers. The viscosity of the solution was measured on a modular compact rheometer. The morphology and the diameter size distribution of the fibers were observed under an environmental scanning electron microscope(ESEM). The results show that the diameters of the nanofibers electro spun from the solutions of these water soluble polymers were uniform and less than 300 nm.展开更多
The addition of water-soluble polymer to a fine coal slurry to enhance dewatering process is considered to be one of the most effective ways of solving the problems of dewatering of fine coal. A series of tests are co...The addition of water-soluble polymer to a fine coal slurry to enhance dewatering process is considered to be one of the most effective ways of solving the problems of dewatering of fine coal. A series of tests are conducted with a vacuum dewatering apparatus to study the effects of various factors such as the species of polymer, polymer dosage and its ways of addition, and the pH of fine coal slurry on filtrating and dewatering of fine coal.展开更多
The study of nanosecond dynamics of macromolecules with the lumines-cent methods make it possible to investigate the formation and functioning of polymericcomplexes, polymeric conjugates and macromolecular metal compl...The study of nanosecond dynamics of macromolecules with the lumines-cent methods make it possible to investigate the formation and functioning of polymericcomplexes, polymeric conjugates and macromolecular metal complexes, which are widelyused for solving many practical tasks. The nanosecond dynamics of macromolecules are ahighly sensitive indicator of interpolymer complexes (IPC) formation. It enables us to solvethe problems of studying IPC formation and stability and to investigate the interpolymerreactions of exchange and substitution. The investigation of changes in the rotational mo-bility of globular protein molecules as a whole makes it possible to determine the complexcomposition and its stability, and to control the course of polymer-protein conjugate forma-tion reaction. The nanosecond dynamics of polymers interacting with surfacants' ions (S)are the sensitive indicator of the S-polymer complex formation. A method for determin-ing the equilibrium constants of the S-polymer complex formation was developed on thebasis of the study of polymer chains mobility. It is established that nanosecond dynamicsinfluences the course of chemical reactions in polymer chains. Moreover, the marked effectof the nanosecond dynamics is also revealed in the study of photophysical processes (theformation of excimers and energy migration of electron excitation) in polymers with pho-toactive groups. It was found that the efficiency of both processes increases with increasingthe mobility of side chains, the carriers of photoactive groups.展开更多
By means of changing the detection angle, the molecular conformation of a new type of polymer surfactant, acrylamide-poly(oxyethykene alkyl ether)acrylate-anionic monomer random copolymer, was studied by x-ray photoel...By means of changing the detection angle, the molecular conformation of a new type of polymer surfactant, acrylamide-poly(oxyethykene alkyl ether)acrylate-anionic monomer random copolymer, was studied by x-ray photoelectron spectroscopy(XPS) in detail.展开更多
A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug,...A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug, polymer-drug composites in the form of nanoparticles were prepared and characterized. The surface morphologies, the physical status of the drug, and the drug-polymer interactions were studied using FESEM, DSC, XRD, and ATR-FTIR. FESEM observations demonstrated that the nanoparticles gradually decreased in size from 640 ± 350, to 530 ± 320, 460 ± 200 and 320 ± 160 nm as the KET content increased from 0, to 9.1%, 16.7% and 33.3% w/w, respectively. Results from DSC and XRD suggested that KET was distributed in the PVP matrix in an amorphous manner at the molecular level. This is thought to be due to their compatibility, arising through hydrogen bonding as demonstrated by ATR- FTIR spectra. In vitro dissolution tests showed that the nanoparticles released the incorporated KET within 1 min, evidencing markedly improved dissolution over pure KET and a KET-PVP physical mixture. Electrospraying can hence offer a facile route to develop new polymer composites for biomedical applications, in particular for improving dissolution rate of poorly water-soluble drugs.展开更多
A series of high performance lubricants of water-soluble polymers with telechelic or star structures has been studied. Their average molecular weights (M) over bar are 1800-6000. The chemical structures of the lubrica...A series of high performance lubricants of water-soluble polymers with telechelic or star structures has been studied. Their average molecular weights (M) over bar are 1800-6000. The chemical structures of the lubricants are characterized by their hydrophilic groups (-CH2CH2O-), -COOH, -OH, -CONH2 and antiwear active elements (S,P,Zn and Mo). The results of assessing for the anti-wear property indicate that this kind of water-soluble polymeric lubricants possesses excellent watersolubility, lubricity and anti-wear property. A preliminary study on the anti-wear mechanism of the polymers is performed by means of electron probe and scanning electron microscopy (SEM).展开更多
Different proportions of β-cydodextrin and epichlorohydrin were used to prepare a group of β-cyclodextrin polymers. The relationship between the reaction extent and the molar ratios of reactants was discussed accord...Different proportions of β-cydodextrin and epichlorohydrin were used to prepare a group of β-cyclodextrin polymers. The relationship between the reaction extent and the molar ratios of reactants was discussed according to the results of ~1H-NMR, ^(13) C-NMR spectra and elemental analysis. Especially, high resolution ~1H-NMR spectra were usd for studying the reaction active sites and the extent of reaction. The solubility of oil soluble drugs in water was largely improved in the presence of water-soluble β-cyclodextrin polymer.展开更多
Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked b...Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked by inorganic salts or OH-containing compounds, pH-sensitive coatings and polymer multi-layer structures. First of three mentioned approaches allows affecting permeability and enhancing the prevention the loss of water from the surface of wood to its surrounding. The advantage of the second approach is its ability to vary and purposely adjust the polymer composition and the number and distribution of -COOH groups in the chain which make the originally water-soluble polymers completely insoluble. The strong feature of the third approach which includes broad use of hydrogen-bonded films produced by layer-by-layer self-assembly is the possibility of manipulation of coatings stability after construction.展开更多
A novel tripyridylporphyrin monomer,5-[4-[2-(acryloyloxy)ethoxy]phenyl]-10,15,20-tris(4-pyridyl)porphyrin (TrPyP),was synthesized and polymerized with acrylamide(AM) to prepare the hydrophobically associating ...A novel tripyridylporphyrin monomer,5-[4-[2-(acryloyloxy)ethoxy]phenyl]-10,15,20-tris(4-pyridyl)porphyrin (TrPyP),was synthesized and polymerized with acrylamide(AM) to prepare the hydrophobically associating water-soluble polymer PAM-TrPyP.The aggregation behavior of porphyrin pendants was investigated by UV-Visible and fluorescence spectra.The polymer displays a strong tendency of hydrophobic association even in dilute solutions.With increasing the concentration,the maximum absorption wavelength of Soret band changes from 416 nm to 407 nm,and the fluorescence corrected for the inner filter effect exhibits moderate concentration quenching.All the results indicate thatπ-πinteraction of porphyrin pendants plays a key role in association of PAM-TrPyP,and H-aggregates of porphyrins are mainly formed in the concentrated solution.On the other hand,dynamic light scattering(DLS) and transmission electron microscopy(TEM) were used to follow the changes in size and structure of the macromolecular assemblies with the concentration increase.The polymer aggregation conformation changes from loose "vesicle-like" morphology to solid globule accordingly.When pH value of solution decreases to 4.3,pyridine moieties on porphyrin pendants could be protonated and the H-aggregates formed in macromolecular matrix are destroyed by electrostatic repulsion interactions.展开更多
Three alcohol/water-soluble porphyrins, Zn-TPyPMeI: zinc(II) meso-tetra(N-methyl-4-pyridyl) porphyrin tetra-iodide, Zn- TPyPAdBr: zinc(II) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-b...Three alcohol/water-soluble porphyrins, Zn-TPyPMeI: zinc(II) meso-tetra(N-methyl-4-pyridyl) porphyrin tetra-iodide, Zn- TPyPAdBr: zinc(II) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide and MnC1-TPyPAdBr: man- ganese(III) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide were employed as cathode interlayers to fabricate polymer solar cells (PSCs). The PCvaBM ([6,6]-phenyl C71 butyric acid methyl ester) and PCDTBT (poly[N-9"- hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',3'-benzothiadiazole)])-blend films were used as active layers in polymer solar cells (PSCs). The PSCs with alcohol/water-soluble porphyrins interlayer showed obviously higher power con- version efficiency (PCE) than those without interlayers. The highest PCE, 6.86%, was achieved for the device with MnCl- TPyPAdBr as an interlayer. Ultraviolet photoemission spectroscopic (UPS), carrier mobility, atomic force microscopy (AFM) and contact angle (0) characterizations demonstrated that the porphyrin molecules can result in the formation of interfacial dipole layer between active layer and cathode. The interfacial dipole layer can obviously improve the open-circuit voltage (Voc) and charge extraction, and sequentially lead to the increase of PCE.展开更多
We investigated a novel water-soluble conjugated polymer (WSCP) for thiol detection based on "turn-off" ef- fect. This WSCP was modified with poly(ethylene glycol) (PEG) by disulfide linkages to achieve good s...We investigated a novel water-soluble conjugated polymer (WSCP) for thiol detection based on "turn-off" ef- fect. This WSCP was modified with poly(ethylene glycol) (PEG) by disulfide linkages to achieve good solubility in aqueous solution (34 mg/mL) and high quantum yield (0.47). The separation of water-soluble PEG chains from the conjugated backbone induced by the cleavage of the disulfide linkages would lead to a significant decrease of the water solubility and a dramatical fluorescence quenching of the probe. The combined intuitive images and fluores- cence spectrophotometer further confirmed that decreased solubility produced an aggregation of the hydrophobic conjugated backbone. The fluorescence intensity of the probe showed a good linear relationship with glutathione (GSH) (1-200 nmol·L^-1), and the detection limit was 16 nmol·L^-1. This WSCP probe was confirmed to be a good sensing material with high selectivity to thiols by testing various biological molecules. And this WSCP probe ex- hibited good detection effect to intracellular thiols by testing Hela cells. Considering the good sensitivity and selec- tivity, the probe could be further used in vivo. In conclusion, this conjugated polymer probe made up for the draw- backs of the micromolecue probes and contributed to the development of new probes based on conjugated poly- mers.展开更多
At present, using cyclodextrins or cyclodextrin derivatives with suitable internal annular dimension to embed C60 so as to form inclusion complexes has been one of the main ways to improve C60's water-solubility. In ...At present, using cyclodextrins or cyclodextrin derivatives with suitable internal annular dimension to embed C60 so as to form inclusion complexes has been one of the main ways to improve C60's water-solubility. In three kinds of cyclodextrins (α-, β-, γ-CD), only γ-CD has cavity large enough to include C60 whereas α-, and β-CD have not. In the case of DMβCD, the "out-stretching" methyl groups enlarge the cavity so that it can include C60. Starting from the same thought, we use epichlorohydrin crosslinked展开更多
The conformation and dimension of SPU polyanion have been studied by viscosity and quasi-elastic light scattering methods. The rigidity of SPU is somewhat similar to CMC and its hydrodynamic radius decreases only slow...The conformation and dimension of SPU polyanion have been studied by viscosity and quasi-elastic light scattering methods. The rigidity of SPU is somewhat similar to CMC and its hydrodynamic radius decreases only slowly with increasing concentration of NaCl.展开更多
Cationic polymers,also known as polycations,are considered to be the most potential non-viral gene carriers due to their unique advantages such as the ability to bind the negative charge of nucleic acid molecules.Mult...Cationic polymers,also known as polycations,are considered to be the most potential non-viral gene carriers due to their unique advantages such as the ability to bind the negative charge of nucleic acid molecules.Multicomponent polymerization(MCP)is a one-step,tandem strategy to construct complex structures based on multicomponent reactions.Herein,we developed a metal-free MCP method based on three monomers of p-dinitrovinylbenzene(p-DNVB),1,1-dimethylethyl N,N-dibromocarbamate(BocNBr_(2)),and bis-secondary-amines with a ratio of 1:2:1,to access a library of Boc-substituted polyamidines with well-defined structures and suitable molecular weights(M w ranging from 4400Da to 11,000Da)in high yields(up to 85%)under mild conditions.Upon the removal of Boc groups,a series of water-soluble polymers with cationic property were prepared and their gene binding capability was further evaluated.展开更多
A new polyelectrolyte (SPU) has been prepared. It can depress the water-loss of drilling-mud much more effective than the commonly used acrylic polyelectrolytes even in 30% NaCl solution. SPU has phenyl group in the b...A new polyelectrolyte (SPU) has been prepared. It can depress the water-loss of drilling-mud much more effective than the commonly used acrylic polyelectrolytes even in 30% NaCl solution. SPU has phenyl group in the backbone with -SO_3^- in the side chain while the acrylic polyelectrolytes have C—C and -COO^- respectively, there exists an intrinsic relationship between the structure of polymer and its tolerance to salts, it has been found: 1) The adsorption amount of polymer on clay is related closely to the flexibility of polymer chain. 2) The salt-tolerance of -SO_3^- is superior to -COO-. 3) Both SPU-mud and HPAN-mud are plastic fluids. The dependence of yield point on salts relates to the molecular weight of polymer and hydration of ionogenic group, which is quite different for SPU-mud and HPAN-mud. 4 ) The extent of raising zeta-potential of base-mud by SPU is greater than by HPAN, but the extent of dropping zeta-potential of SPU-mud by NaCI is smaller than HPAN-mud. According to these results we suppose the salt-tolerance of SPU-mud is attributed mainly to hydration of -SO_3^- and that of HPAN-mud mainly to network structure formed in the drilling-mud.展开更多
Stable aqueous amino-grafted silicon nanoparticles (SiNPs-NH2) were prepared via one-pot solution method. By grafting amino groups on the particle surface, the dispersion of SiNPs in water became very stable and cle...Stable aqueous amino-grafted silicon nanoparticles (SiNPs-NH2) were prepared via one-pot solution method. By grafting amino groups on the particle surface, the dispersion of SiNPs in water became very stable and clear aqueous solutions could be obtained. By incorporating SiNPs-NH2 into the hole transport layer of poly(3,4- ethylenedioxythiophene)/polystyrene sulfonic acid (PEDOT'PSS), the performance of polymer solar cells composed of poly[2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as active layer can be improved. SiNPs-NH2 are dispersed uniformly in the PEDOT:PSS solution and help form morphologies with small-sized domains in the PEDOT:PSS film. SiNPs-NH2 serve as screens between conducting polymer PEDOT and ionomer PSS to improve the phase separation and charge transport of the hole transport layer. As a result, the sheet resistance of PEDOT:PSS thin films is decreased from (93 ±5) × 10^5 to (13 ± 3) × 10^5 Ω/□. The power conversion efficiency (PCE) of polymer solar cells was thus improved by 9.8% for devices fabricated with PEDOT'PSS containing 1 wt% of SiNPs-NH2, compared with the devices fabricated by original PEDOT:PSS.展开更多
An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6′-phosphatehexyl)fluorene-alt-1,4-pheny lene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well so...An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6′-phosphatehexyl)fluorene-alt-1,4-pheny lene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3′-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer. Moreover, polymer PFHPNa showed higher fluorescence quenching toward large biomolecules than PFPPNa. The corresponding Stern-Volmer (Ksv) value of polymer PFHPNa was determined to be 2.1×108 M-1 for cytochrome c. It could be used as a sensitive and selective fluorescence sensor for protein cytochrome c.展开更多
文摘Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.
基金Supported by the Development Project of Jilin Province Science and Technology of China(No.20080344)
文摘A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without the use of a surfactant. The effects of solution properties on the electrospinning of PEO, PAM and PVP solutions were investigated. The viscosity of the solution, charge density carried by the jet, and the surface tension of the solution are the key factors that influence the morphology and diameter size of the fibers. The viscosity of the solution was measured on a modular compact rheometer. The morphology and the diameter size distribution of the fibers were observed under an environmental scanning electron microscope(ESEM). The results show that the diameters of the nanofibers electro spun from the solutions of these water soluble polymers were uniform and less than 300 nm.
文摘The addition of water-soluble polymer to a fine coal slurry to enhance dewatering process is considered to be one of the most effective ways of solving the problems of dewatering of fine coal. A series of tests are conducted with a vacuum dewatering apparatus to study the effects of various factors such as the species of polymer, polymer dosage and its ways of addition, and the pH of fine coal slurry on filtrating and dewatering of fine coal.
基金This work is partly supported by the Russian Foundation of Fundamental Research Grant N 97-03-32682).
文摘The study of nanosecond dynamics of macromolecules with the lumines-cent methods make it possible to investigate the formation and functioning of polymericcomplexes, polymeric conjugates and macromolecular metal complexes, which are widelyused for solving many practical tasks. The nanosecond dynamics of macromolecules are ahighly sensitive indicator of interpolymer complexes (IPC) formation. It enables us to solvethe problems of studying IPC formation and stability and to investigate the interpolymerreactions of exchange and substitution. The investigation of changes in the rotational mo-bility of globular protein molecules as a whole makes it possible to determine the complexcomposition and its stability, and to control the course of polymer-protein conjugate forma-tion reaction. The nanosecond dynamics of polymers interacting with surfacants' ions (S)are the sensitive indicator of the S-polymer complex formation. A method for determin-ing the equilibrium constants of the S-polymer complex formation was developed on thebasis of the study of polymer chains mobility. It is established that nanosecond dynamicsinfluences the course of chemical reactions in polymer chains. Moreover, the marked effectof the nanosecond dynamics is also revealed in the study of photophysical processes (theformation of excimers and energy migration of electron excitation) in polymers with pho-toactive groups. It was found that the efficiency of both processes increases with increasingthe mobility of side chains, the carriers of photoactive groups.
文摘By means of changing the detection angle, the molecular conformation of a new type of polymer surfactant, acrylamide-poly(oxyethykene alkyl ether)acrylate-anionic monomer random copolymer, was studied by x-ray photoelectron spectroscopy(XPS) in detail.
文摘A modified electrospraying process is exploited to enhance the dissolution profiles of a poorly water-soluble drug. With polyvinylpyrrolidone (PVP) as a hydrophilic polymer matrix and ketoprofen (KET) as a model drug, polymer-drug composites in the form of nanoparticles were prepared and characterized. The surface morphologies, the physical status of the drug, and the drug-polymer interactions were studied using FESEM, DSC, XRD, and ATR-FTIR. FESEM observations demonstrated that the nanoparticles gradually decreased in size from 640 ± 350, to 530 ± 320, 460 ± 200 and 320 ± 160 nm as the KET content increased from 0, to 9.1%, 16.7% and 33.3% w/w, respectively. Results from DSC and XRD suggested that KET was distributed in the PVP matrix in an amorphous manner at the molecular level. This is thought to be due to their compatibility, arising through hydrogen bonding as demonstrated by ATR- FTIR spectra. In vitro dissolution tests showed that the nanoparticles released the incorporated KET within 1 min, evidencing markedly improved dissolution over pure KET and a KET-PVP physical mixture. Electrospraying can hence offer a facile route to develop new polymer composites for biomedical applications, in particular for improving dissolution rate of poorly water-soluble drugs.
基金This study is supported by the National Natural Science Foundation of China
文摘A series of high performance lubricants of water-soluble polymers with telechelic or star structures has been studied. Their average molecular weights (M) over bar are 1800-6000. The chemical structures of the lubricants are characterized by their hydrophilic groups (-CH2CH2O-), -COOH, -OH, -CONH2 and antiwear active elements (S,P,Zn and Mo). The results of assessing for the anti-wear property indicate that this kind of water-soluble polymeric lubricants possesses excellent watersolubility, lubricity and anti-wear property. A preliminary study on the anti-wear mechanism of the polymers is performed by means of electron probe and scanning electron microscopy (SEM).
基金The project is supported by National Natural Science Foundation of China
文摘Different proportions of β-cydodextrin and epichlorohydrin were used to prepare a group of β-cyclodextrin polymers. The relationship between the reaction extent and the molar ratios of reactants was discussed according to the results of ~1H-NMR, ^(13) C-NMR spectra and elemental analysis. Especially, high resolution ~1H-NMR spectra were usd for studying the reaction active sites and the extent of reaction. The solubility of oil soluble drugs in water was largely improved in the presence of water-soluble β-cyclodextrin polymer.
文摘Three major types of protective coating of wood and wood-based materials have been considered. These three types include the coatings based on carboxyl-containing water-soluble polymers which are easily cross-linked by inorganic salts or OH-containing compounds, pH-sensitive coatings and polymer multi-layer structures. First of three mentioned approaches allows affecting permeability and enhancing the prevention the loss of water from the surface of wood to its surrounding. The advantage of the second approach is its ability to vary and purposely adjust the polymer composition and the number and distribution of -COOH groups in the chain which make the originally water-soluble polymers completely insoluble. The strong feature of the third approach which includes broad use of hydrogen-bonded films produced by layer-by-layer self-assembly is the possibility of manipulation of coatings stability after construction.
文摘A novel tripyridylporphyrin monomer,5-[4-[2-(acryloyloxy)ethoxy]phenyl]-10,15,20-tris(4-pyridyl)porphyrin (TrPyP),was synthesized and polymerized with acrylamide(AM) to prepare the hydrophobically associating water-soluble polymer PAM-TrPyP.The aggregation behavior of porphyrin pendants was investigated by UV-Visible and fluorescence spectra.The polymer displays a strong tendency of hydrophobic association even in dilute solutions.With increasing the concentration,the maximum absorption wavelength of Soret band changes from 416 nm to 407 nm,and the fluorescence corrected for the inner filter effect exhibits moderate concentration quenching.All the results indicate thatπ-πinteraction of porphyrin pendants plays a key role in association of PAM-TrPyP,and H-aggregates of porphyrins are mainly formed in the concentrated solution.On the other hand,dynamic light scattering(DLS) and transmission electron microscopy(TEM) were used to follow the changes in size and structure of the macromolecular assemblies with the concentration increase.The polymer aggregation conformation changes from loose "vesicle-like" morphology to solid globule accordingly.When pH value of solution decreases to 4.3,pyridine moieties on porphyrin pendants could be protonated and the H-aggregates formed in macromolecular matrix are destroyed by electrostatic repulsion interactions.
基金supported by the National Basic Research Program of China(2014CB643500)the National Natural Science Foundation of China(51273077,51173065)
文摘Three alcohol/water-soluble porphyrins, Zn-TPyPMeI: zinc(II) meso-tetra(N-methyl-4-pyridyl) porphyrin tetra-iodide, Zn- TPyPAdBr: zinc(II) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide and MnC1-TPyPAdBr: man- ganese(III) meso-tetra[1-(1-adamantylmethyl ketone)-4-pyridyl] porphyrin tetra-bromide were employed as cathode interlayers to fabricate polymer solar cells (PSCs). The PCvaBM ([6,6]-phenyl C71 butyric acid methyl ester) and PCDTBT (poly[N-9"- hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',3'-benzothiadiazole)])-blend films were used as active layers in polymer solar cells (PSCs). The PSCs with alcohol/water-soluble porphyrins interlayer showed obviously higher power con- version efficiency (PCE) than those without interlayers. The highest PCE, 6.86%, was achieved for the device with MnCl- TPyPAdBr as an interlayer. Ultraviolet photoemission spectroscopic (UPS), carrier mobility, atomic force microscopy (AFM) and contact angle (0) characterizations demonstrated that the porphyrin molecules can result in the formation of interfacial dipole layer between active layer and cathode. The interfacial dipole layer can obviously improve the open-circuit voltage (Voc) and charge extraction, and sequentially lead to the increase of PCE.
文摘We investigated a novel water-soluble conjugated polymer (WSCP) for thiol detection based on "turn-off" ef- fect. This WSCP was modified with poly(ethylene glycol) (PEG) by disulfide linkages to achieve good solubility in aqueous solution (34 mg/mL) and high quantum yield (0.47). The separation of water-soluble PEG chains from the conjugated backbone induced by the cleavage of the disulfide linkages would lead to a significant decrease of the water solubility and a dramatical fluorescence quenching of the probe. The combined intuitive images and fluores- cence spectrophotometer further confirmed that decreased solubility produced an aggregation of the hydrophobic conjugated backbone. The fluorescence intensity of the probe showed a good linear relationship with glutathione (GSH) (1-200 nmol·L^-1), and the detection limit was 16 nmol·L^-1. This WSCP probe was confirmed to be a good sensing material with high selectivity to thiols by testing various biological molecules. And this WSCP probe ex- hibited good detection effect to intracellular thiols by testing Hela cells. Considering the good sensitivity and selec- tivity, the probe could be further used in vivo. In conclusion, this conjugated polymer probe made up for the draw- backs of the micromolecue probes and contributed to the development of new probes based on conjugated poly- mers.
基金Project supported by the Doctoral Fund of China and the Science Fund of the Chinese Academy of Sciences.
文摘At present, using cyclodextrins or cyclodextrin derivatives with suitable internal annular dimension to embed C60 so as to form inclusion complexes has been one of the main ways to improve C60's water-solubility. In three kinds of cyclodextrins (α-, β-, γ-CD), only γ-CD has cavity large enough to include C60 whereas α-, and β-CD have not. In the case of DMβCD, the "out-stretching" methyl groups enlarge the cavity so that it can include C60. Starting from the same thought, we use epichlorohydrin crosslinked
文摘The conformation and dimension of SPU polyanion have been studied by viscosity and quasi-elastic light scattering methods. The rigidity of SPU is somewhat similar to CMC and its hydrodynamic radius decreases only slowly with increasing concentration of NaCl.
基金supported by the National Science Founda-tion of China(No.21978039)Special Funds of the Central Gov-ernment Leading Local Government for the Technology Develop-ment(Nos.2021JH6/10500148,2021JH6/10500146)Fundamental Research Funds for the Central Universities(Nos.DUT21YG133,DUT20YG120).
文摘Cationic polymers,also known as polycations,are considered to be the most potential non-viral gene carriers due to their unique advantages such as the ability to bind the negative charge of nucleic acid molecules.Multicomponent polymerization(MCP)is a one-step,tandem strategy to construct complex structures based on multicomponent reactions.Herein,we developed a metal-free MCP method based on three monomers of p-dinitrovinylbenzene(p-DNVB),1,1-dimethylethyl N,N-dibromocarbamate(BocNBr_(2)),and bis-secondary-amines with a ratio of 1:2:1,to access a library of Boc-substituted polyamidines with well-defined structures and suitable molecular weights(M w ranging from 4400Da to 11,000Da)in high yields(up to 85%)under mild conditions.Upon the removal of Boc groups,a series of water-soluble polymers with cationic property were prepared and their gene binding capability was further evaluated.
基金The project is supported by National Natural Science Foundation of China
文摘A new polyelectrolyte (SPU) has been prepared. It can depress the water-loss of drilling-mud much more effective than the commonly used acrylic polyelectrolytes even in 30% NaCl solution. SPU has phenyl group in the backbone with -SO_3^- in the side chain while the acrylic polyelectrolytes have C—C and -COO^- respectively, there exists an intrinsic relationship between the structure of polymer and its tolerance to salts, it has been found: 1) The adsorption amount of polymer on clay is related closely to the flexibility of polymer chain. 2) The salt-tolerance of -SO_3^- is superior to -COO-. 3) Both SPU-mud and HPAN-mud are plastic fluids. The dependence of yield point on salts relates to the molecular weight of polymer and hydration of ionogenic group, which is quite different for SPU-mud and HPAN-mud. 4 ) The extent of raising zeta-potential of base-mud by SPU is greater than by HPAN, but the extent of dropping zeta-potential of SPU-mud by NaCI is smaller than HPAN-mud. According to these results we suppose the salt-tolerance of SPU-mud is attributed mainly to hydration of -SO_3^- and that of HPAN-mud mainly to network structure formed in the drilling-mud.
基金financially supported by the National Natural Science Foundation of China(NSFC)(Nos.51261130582,91233114 and 50990063)
文摘Stable aqueous amino-grafted silicon nanoparticles (SiNPs-NH2) were prepared via one-pot solution method. By grafting amino groups on the particle surface, the dispersion of SiNPs in water became very stable and clear aqueous solutions could be obtained. By incorporating SiNPs-NH2 into the hole transport layer of poly(3,4- ethylenedioxythiophene)/polystyrene sulfonic acid (PEDOT'PSS), the performance of polymer solar cells composed of poly[2-methoxy,5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as active layer can be improved. SiNPs-NH2 are dispersed uniformly in the PEDOT:PSS solution and help form morphologies with small-sized domains in the PEDOT:PSS film. SiNPs-NH2 serve as screens between conducting polymer PEDOT and ionomer PSS to improve the phase separation and charge transport of the hole transport layer. As a result, the sheet resistance of PEDOT:PSS thin films is decreased from (93 ±5) × 10^5 to (13 ± 3) × 10^5 Ω/□. The power conversion efficiency (PCE) of polymer solar cells was thus improved by 9.8% for devices fabricated with PEDOT'PSS containing 1 wt% of SiNPs-NH2, compared with the devices fabricated by original PEDOT:PSS.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20574067 & 50633040)the Science Fund for Creative Research Groups (Grant No. 20621401)the 973 Project (Grant No. 2002CB613402)
文摘An anionic water-soluble polyfluorene derivative, poly(9,9-bis(6′-phosphatehexyl)fluorene-alt-1,4-pheny lene) sodium salt (PFHPNa), was synthesized by Suzuki coupling reaction in DMF/water. Polymer PFHPNa was well soluble in water with a strong blue fluorescence emission. Effect of the side chain length on fluorescence sensory properties was studied by comparing quenching efficiencies toward different quenchers of PFHPNa with a reported polymer poly(9,9-bis(3′-phosphatepropyl)fluorene-alt-1,4-phenylene) sodium salt (PFPPNa), which have different side chains in length. For small molecular quenchers (methylviologen, MV2+) and meso-5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4), polymer PFHPNa had lower sensitivity due to the much longer side chain length. The positively charged metalloprotein cytochrome c could quench fluorescence of conjugated polymers via energy transfer and electron transfer. Moreover, polymer PFHPNa showed higher fluorescence quenching toward large biomolecules than PFPPNa. The corresponding Stern-Volmer (Ksv) value of polymer PFHPNa was determined to be 2.1×108 M-1 for cytochrome c. It could be used as a sensitive and selective fluorescence sensor for protein cytochrome c.