Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The r...Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.展开更多
Although putrescine(PUT)has been linked to plants'responses to cadmium(Cd)stress,the exact mechanism is still elusive.In the current investigation,the endogenous PUT concentration in rice roots was enhanced by Cd ...Although putrescine(PUT)has been linked to plants'responses to cadmium(Cd)stress,the exact mechanism is still elusive.In the current investigation,the endogenous PUT concentration in rice roots was enhanced by Cd stress.Exogenous PUT increased root cell wall hemicellulose levels,which in turn increased its Cd binding capacity,concurrently decreasing the transcription level of genes such as OsNRAMP1 and OsCd1 that are responsible for root Cd absorption.As a result。展开更多
The pervasive utilization of industrial substances has escalated human exposure to cadmium(Cd),a metal associated with long-term negative health outcomes such as renal dysfunction,neurological disorders,and various ca...The pervasive utilization of industrial substances has escalated human exposure to cadmium(Cd),a metal associated with long-term negative health outcomes such as renal dysfunction,neurological disorders,and various cancers^([1]).Once ingested by humans,Cd interacts with cysteine-rich metallothioneins(MTs)which have metal-binding and antioxidant properties and is subsequently transported to the kidney^([2]).展开更多
To evaluate the combined effect of temperature and cadmium on the molecular responses of heat shock protein 70(hsp70)and P-glycoprotein(P-gp)in mantle,digestive gland and gills of Crassostrea gigas,oysters were expose...To evaluate the combined effect of temperature and cadmium on the molecular responses of heat shock protein 70(hsp70)and P-glycoprotein(P-gp)in mantle,digestive gland and gills of Crassostrea gigas,oysters were exposed to combinations of five temperature levels(10,15,20,25,and 30℃)and 10μg L^(-1)cadmium for 21 days.Oysters were sampled for mRNA quantification by qPCR,and the results showed that the P-gp gene expression changed significantly after treatment at different temperatures and different treatment times.The P-gp gene expression was the highest in the digestive gland.Compared with the control group,the P-gp gene expression in cadmium treatment groups at all the different temperatures were significantly higher than the control group.The control oysters(kept at 10℃during the whole experiment without cadmium)expressed low levels of hsp70,but the groups treated with cadmium displayed somewhat higher levels.The present study demonstrated hsp70 and P-gp played an important role in the detoxification of Cd in C.gigas,and confirmed temperature should be considered for the assessment of Cd-induced toxicity in oysters.展开更多
Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain uncle...Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.展开更多
Vegetable fields are often contaminated by heavy metals,and Spodoptera exigua is a major vegetable pest which is stressed by heavy metals mainly by feeding.In this study,cadmium accumulation in the tissues of S.exigua...Vegetable fields are often contaminated by heavy metals,and Spodoptera exigua is a major vegetable pest which is stressed by heavy metals mainly by feeding.In this study,cadmium accumulation in the tissues of S.exigua exposed to cadmium and its effects on the growth and development of the parents and the offspring were investigated.Under the stress of different concentrations of cadmium(0.2,3.2,and 51.2 mg kg^(-1)),the cadmium content in each tissue of S.exigua increased in a dose-dependent manner.At the larval stage,the highest cadmium accumulation was found in midgut in all three cadmium treatments,but at the adult stage,the highest cadmium content was found in fat body.In addition,the cadmium content in ovaries was much higher than in testes.When F1S.exigua was stressed by cadmium and the F_(2)generation was not fed a cadmium-containing diet,the larval survival,pupation rate,emergence rate and fecundity of the F_(2)generation were significantly reduced in the 51.2 mg kg^(-1)treatment compared to the corresponding F1generation.Even in the F_(2)generation of the 3.2 mg kg^(-1)treatment,the fecundity was significantly lower than in the parental generation.The fecundity of the only-female stressed treatment was significantly lower than that of the only-male stressed treatment at the 3.2 and 51.2 mg kg^(-1)cadmium exposure levels.When only mothers were stressed at the larval stage,the fecundity of the F_(2)generation was significantly lower than that of the F1generation in the 51.2 mg kg^(-1)treatment,and it was also significantly lower than in the 3.2 and 0.2 mg kg^(-1)treatments.The results of our study can provide useful information for forecasting the population increase trends under different heavy metal stress conditions and for the reliable environmental risk assessment of heavy metal pollution.展开更多
【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechan...【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.展开更多
Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of C...Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.展开更多
In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing a...In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain.展开更多
Anthropogenic activities have greatly affected water resources on a global scale where the world is experiencing water quality and resources issues. Heavy metal is a crucial group of pollutants that is toxic to the en...Anthropogenic activities have greatly affected water resources on a global scale where the world is experiencing water quality and resources issues. Heavy metal is a crucial group of pollutants that is toxic to the environment even at low concentrations due to its bioaccumulation and biomagnification capabilities in living organisms. The detrimental effects of heavy metals on living organisms are due to their bioaccumulation in the aquatic ecosystem. Cadmium may result in adverse health effects due to its high toxicity. The study is conducted to determine the cadmium exposure effects on the morphometric indices of Anabas testudineus which are the Scaling Coefficient (SC) and Condition Factor (K) of such species. Anabas testudineus is exposed to four different cadmium treatment groups namely the control group, cadmium treatment group of 0.005 mg/L, 0.010 mg/L, and 0.015 mg/L for 16 weeks. The findings of the study have reported inconsistent trends in the values of SC and a decrease in the value of K with increasing cadmium concentration. The trend for the average SC has shown an overall decrease in value while the pattern of the K value is inconsistent in each treatment group with exposure time. Collectively, no significant differences for SC and K of A. testudineus in different treatment groups as well as comparison between treatment groups with time exposure.展开更多
A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure opt...A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.展开更多
[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinet...[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinetics model, Gompertz model, Weibull model, Higuchi model and Logistic model were used to fit the BSA release profile from WSC carriers. [Result] Except Higuchi model and Logistic model, other models could fit BSA release profile better. [Conclusion] Gompertz two-order kinetics model could fit the release of WSC nano-particles better and model parameters had practical physical meaning.展开更多
Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution...Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.展开更多
[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicida...[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicidal substances. [Method] The effects of water-soluble extracts of Chinese chive on the growth of Microcystis aeruginosa under different pH, light and aeration conditions were compared and studied. [Result] The growth inhibition rate of water-soluble extracts of Chinese chive on M. aeruginosa was greater than 90% under different pH conditions. With the growth of M. aeruginosa, the culture liquid with different initial pH was finally tended to 9-9.5. The growth inhibition rate of water-soluble extracts of Chinese chive on algae cell increased with the prolongation of culture time within the light intensity range of 1 000-4 000 lx. The inhibition effect of water-soluble extracts of Chinese chive on M. aeruginosa under low light intensity(1 000 lx)was better than that under high light intensity, the best light intensity for growth was not conducive to the exertion of allelopathic effect. Meanwhile, aeration condition was more conducive to the inhibition effect of water-soluble extracts of Chinese chive on the growth of M. aeruginosa. [Conclusion] pH, light and aeration conditions all affected the inhibition effect of water-soluble extracts of Chinese chive treated by high temperature on M. aeruginosa. Understanding the effect of these environmental factors on algicidal effect of allelochemicals could provide reference for further study and development of new algicidal substances.展开更多
The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory ...The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 thm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kghm-2) of the cores with the thatch layer was higher than that (20 kghm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.展开更多
Nanocrystals,a carrier-free colloidal delivery system in nano-sized range,is an interesting approach for poorly soluble drugs.Nanocrystals provide special features including enhancement of saturation solubility,dissol...Nanocrystals,a carrier-free colloidal delivery system in nano-sized range,is an interesting approach for poorly soluble drugs.Nanocrystals provide special features including enhancement of saturation solubility,dissolution velocity and adhesiveness to surface/cell membranes.Several strategies are applied for nanocrystals production including precipitation,milling,high pressure homogenization and combination methods such as Nano-Edge^(TM),SmartCrystal and Precipitation-lyophilization-homogenization(PLH)technology.For oral administration,many publications reported useful advantages of nanocrystals to improve in vivo performances i.e.pharmacokinetics,pharmacodynamics,safety and targeted delivery which were discussed in this review.Additionally,transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.展开更多
A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- ...A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- 4, PO 3- 4), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 μg/m 3 to 500 μg/m 3(r = 0.999—0.9999). The relative standard deviation(RSD) were 0.43%—2.00% and the detection limits were from 2.7 ng/m 3 to 88 ng/m 3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM 2.5 of Beijing.展开更多
Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-lin...Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO4^2-, NO3^-, NO2^-, Cl^- and F- is below 0.3μg m^-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.展开更多
Chemotaxis to water-soluble attractants is mainly controlled by ASE sensory neuron whose specification is regulated by che-1 in Caenorhabditis elegans. Our data suggested that exposure to high concentrations of metals...Chemotaxis to water-soluble attractants is mainly controlled by ASE sensory neuron whose specification is regulated by che-1 in Caenorhabditis elegans. Our data suggested that exposure to high concentrations of metals, such as Pb, Cu, Ag, and Cr, would result in severe defects of chemotaxis to water-soluble attractants of NaCl, cAMP, and biotin. Moreover, the morphology of ASE neuron structures as observed by relative fluorescent intensities and relative size of fluorescent puncta of cell bodies, relative lengths of sensory endings in ASE neurons, and the expression patterns of che-1 were obviously altered in metal exposed animals when they meanwhile exhibited obvious chemotaxis defects to water-soluble attractants. In addition, the dendrite morphology could be noticeably changed in animals exposed to 150 μmol/L of Pb, Cu, and Ag. Furthermore, we observed significant decreases of chemotaxis to water-soluble attractants in Pb exposed che-1 mutant at concentrations more than 2.5 μmol/L, and in Cu, Ag, and Cr exposed che-1 mutant at concentrations more than 50 μmol/L. Therefore, impairment of the ASE neuron structures and functions may largely contribute to the appearance of chemotaxis defects to water-soluble attractants in metal exposed nematodes.展开更多
A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without...A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without the use of a surfactant. The effects of solution properties on the electrospinning of PEO, PAM and PVP solutions were investigated. The viscosity of the solution, charge density carried by the jet, and the surface tension of the solution are the key factors that influence the morphology and diameter size of the fibers. The viscosity of the solution was measured on a modular compact rheometer. The morphology and the diameter size distribution of the fibers were observed under an environmental scanning electron microscope(ESEM). The results show that the diameters of the nanofibers electro spun from the solutions of these water soluble polymers were uniform and less than 300 nm.展开更多
基金the National Natural Science Foundation of China(Grant No.52270154)the National Engineering Research Center for Bioenergy,Harbin Institute of Technology,China(Grant No.2021C001).
文摘Cadmium(Cd)contamination in rice has been a serious threat to human health.To investigate the effects of arbuscular mycorrhizal fungi(AMF)on the Cd translocation in rice,a controlled pot experiment was conducted.The results indicated that AMF significantly increased rice biomass,with an increase of up to 40.0%,particularly in root biomass by up to 68.4%.Notably,the number of prominent rice individuals also increased,and their plasticity was enhanced following AMF inoculation.AMF led to an increase in the net photosynthetic rate and antioxidant enzyme activity of rice.In the AMF treatment group,the Cd concentration in the rice roots was significantly higher(19.1%‒68.0%)compared with that in the control group.Conversely,the Cd concentration in the rice seeds was lower in the AMF treatment group,indicating that AMF facilitated the sequestration of Cd in rice roots and reduced Cd accumulation in the seeds.Path coefficients varied across different treatments,suggesting that AMF inoculation reduced the direct impact of soil Cd concentration on the total Cd accumulation in seeds.The translocation of Cd was consistently associated with simultaneous growth dilution and compensatory accumulation as a result of mycorrhizal effects.Our study quantitatively analyzed this process through path analysis and clarified the causal relationship between rice growth and Cd transfer under the influence of AMF.
基金supported by the Hainan Yazhou Bay Seed Laboratory Project,China(Grant No.B21HJ0220)the National Natural Science Foundation of China(Grant No.42020104004)+3 种基金the Field Frontier Program of the Institute of Soil Science,China(Grant No.ISSASIP2215)the Agricultural Science and Technology Independent Innovation Fund Project of Jiangsu Province,China(Grant No.CX(21)2034)the Key Research and Development Project of Jiangsu Province,China(Grant No.BE2021717)the Special Fund Project of Soil Pollution Prevention and Control(Xinyi Agriculture and Rural Bureau,New Collection List(2021)1468)。
文摘Although putrescine(PUT)has been linked to plants'responses to cadmium(Cd)stress,the exact mechanism is still elusive.In the current investigation,the endogenous PUT concentration in rice roots was enhanced by Cd stress.Exogenous PUT increased root cell wall hemicellulose levels,which in turn increased its Cd binding capacity,concurrently decreasing the transcription level of genes such as OsNRAMP1 and OsCd1 that are responsible for root Cd absorption.As a result。
基金supported by the National Natural Science Foundation of China[grant numbers 82103887]Hunan Provincial Natural Science Foundation of China[grant numbers 2021JJ30752 and 2021JJ40374]+1 种基金National Science Fund for Excellent Young Scholars of Hunan Province[grant numbers 2023JJ20032]Changsha Natural Science[grant numbers 45045]。
文摘The pervasive utilization of industrial substances has escalated human exposure to cadmium(Cd),a metal associated with long-term negative health outcomes such as renal dysfunction,neurological disorders,and various cancers^([1]).Once ingested by humans,Cd interacts with cysteine-rich metallothioneins(MTs)which have metal-binding and antioxidant properties and is subsequently transported to the kidney^([2]).
基金supported by the earmarked fund for the Modern Agroindustry Technology Research System in Shandong Province (No.SDAIT-14)。
文摘To evaluate the combined effect of temperature and cadmium on the molecular responses of heat shock protein 70(hsp70)and P-glycoprotein(P-gp)in mantle,digestive gland and gills of Crassostrea gigas,oysters were exposed to combinations of five temperature levels(10,15,20,25,and 30℃)and 10μg L^(-1)cadmium for 21 days.Oysters were sampled for mRNA quantification by qPCR,and the results showed that the P-gp gene expression changed significantly after treatment at different temperatures and different treatment times.The P-gp gene expression was the highest in the digestive gland.Compared with the control group,the P-gp gene expression in cadmium treatment groups at all the different temperatures were significantly higher than the control group.The control oysters(kept at 10℃during the whole experiment without cadmium)expressed low levels of hsp70,but the groups treated with cadmium displayed somewhat higher levels.The present study demonstrated hsp70 and P-gp played an important role in the detoxification of Cd in C.gigas,and confirmed temperature should be considered for the assessment of Cd-induced toxicity in oysters.
基金supported by the National Natural Science Foundation of China (Grant No.31971872)the Open Research Fund of State Key Laboratory of Hybrid Rice, China (Grant No.2022KF02)+3 种基金the National Natural Science Foundation of China (Grant Nos.32101755 and 32188102)the Zhejiang Provincial Natural Science Foundation, China (Grant No.LY22C130005)the Key Research and Development Program of Zhejiang Province, China (Grant No.2021C02056)the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang, China (Grant No.2023C02014)。
文摘Reasonable nitrogen(N) application is a promising strategy for reducing crop cadmium(Cd) toxicity. However, the specific form of N and the required amount that affect Cd tolerance and accumulation in rice remain unclear. This study explored the influence of different N-fertilizer forms(NH_(4)NO_(3), NH_4Cl, and KNO_(3)) and dosages on Cd tolerance and uptake in Cd-stressed N-sensitive and N-insensitive indica rice accessions. The results indicated that the Cd tolerance of N-sensitive indica accessions is more robust than that of N-insensitive ones. Furthermore, the shoot Cd content and Cd translocation rate in both N-sensitive and N-insensitive indica accessions decreased with an appropriate supply of NH_(4)NO_(3) and NH_4Cl, whereas they were comparable or slightly increased with increased KNO_(3). Unfortunately, we did not find significant and regular differences in Cd accumulation or translocation between N-sensitive and N-insensitive rice accessions. Consistent with the reduction of shoot Cd content, the addition of NH_(4)NO_(3) and NH_4Cl also inhibited the instantaneous root Cd^(2+) uptake. The expression changes of Cd transport-related genes under different N forms and dosages suggested that the decreased shoot Cd content, caused by the increased supply of NH_(4)NO_(3) and NH_4Cl, is likely achieved by reducing the transcription of OsNRAMP1 and OsIRT1. In summary, our findings reveal that an appropriate supply of NH_(4)NO_(3) and NH_4Cl could reduce Cd uptake and transport in rice seedlings, suggesting that rational N management could reduce the Cd risk in rice production.
基金partially supported by the Open Project Program from the Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization(Ministry of Agriculture and Rural Affairs),China(212103)。
文摘Vegetable fields are often contaminated by heavy metals,and Spodoptera exigua is a major vegetable pest which is stressed by heavy metals mainly by feeding.In this study,cadmium accumulation in the tissues of S.exigua exposed to cadmium and its effects on the growth and development of the parents and the offspring were investigated.Under the stress of different concentrations of cadmium(0.2,3.2,and 51.2 mg kg^(-1)),the cadmium content in each tissue of S.exigua increased in a dose-dependent manner.At the larval stage,the highest cadmium accumulation was found in midgut in all three cadmium treatments,but at the adult stage,the highest cadmium content was found in fat body.In addition,the cadmium content in ovaries was much higher than in testes.When F1S.exigua was stressed by cadmium and the F_(2)generation was not fed a cadmium-containing diet,the larval survival,pupation rate,emergence rate and fecundity of the F_(2)generation were significantly reduced in the 51.2 mg kg^(-1)treatment compared to the corresponding F1generation.Even in the F_(2)generation of the 3.2 mg kg^(-1)treatment,the fecundity was significantly lower than in the parental generation.The fecundity of the only-female stressed treatment was significantly lower than that of the only-male stressed treatment at the 3.2 and 51.2 mg kg^(-1)cadmium exposure levels.When only mothers were stressed at the larval stage,the fecundity of the F_(2)generation was significantly lower than that of the F1generation in the 51.2 mg kg^(-1)treatment,and it was also significantly lower than in the 3.2 and 0.2 mg kg^(-1)treatments.The results of our study can provide useful information for forecasting the population increase trends under different heavy metal stress conditions and for the reliable environmental risk assessment of heavy metal pollution.
基金Guangxi Natural Science Foundation(2024GXNSFAA010469,2021GXNSFBA196028)Science and Technology Development Project of Guangxi Academy of Agricultural Sciences(Guinongke 2021YT137,Guinongke 2022JM86)。
文摘【Objective】Through analyzing the bioaccumulation capacity,subcellular distribution and chemical forms of cadmium(Cd)in Aster subulatus Michx.,this study was to provide reference for revealing the Cd tolerance mechanism of A.subulatus Michx.【Method】After cultured for 24 d under the action of Hoagland nutrient solution and gradient Cd concentrations(0,30,60 and 90 mg/L),A.subulatus Michx.were harvested,and its leaf,stem and root were treated by differential centrifugation,chemical reagent extraction,and digested with graphite digester,respectively,then the Cd content in the root,stem and leaf were determined by atomic absorption spectroscopy.【Result】The experimental results indicated that the bioaccumulation capacity of Cd in A.subulatus Michx.was root>stem>leaf,and the maximum Cd concentration in the root,stem and leaf of A.subulatus Michx.were 130.74,78.69 and 56.62 mg/kg(fresh matter),respectively.Most of Cd stored in the cell wall and the soluble fractions of the root and leaf of A.subulatus Michx.,with only a smaller portion Cd in organelle fraction.Analysis result of subcellular Cd content showed that 52.27%-58.61%of Cd for root was mainly stored in the soluble fraction,but 42.10%-63.28%of Cd for leaf was mainly stored in the cell wall fraction.The concentration of pectates and protein integrated-Cd was higher in the root and leaf compared to other chemical forms Cd.Pectates and protein integrated-Cd was the main chemical forms Cd in the root and leaf of A.subulatus Michx.,and their percentages were 68.91%-74.80%and 57.38%-83.80%,respectively.Cd treatment could significantly increase the proportion of water-soluble organic acid Cd from 13.64%to 22.72%in root and undissolved phosphate Cd from 10.02%to 32.78%in leaf with increasing Cd concentration in the culture medium.【Conclusion】The root,stem and leaf of A.subulatus Michx.has strong bioaccumulation capacity to Cd,Cd is primarily stored in the soluble fractions of the root and cell wall fractions of the leaf,and less toxic pectates and protein integrated-Cd is the main chemical forms Cd in the root and leaf of A.subulatus Michx.,this might be the main mechanism of Cd tolerance in A.subulatus Michx.
基金supported by the National Natural Science Foundation of China (Grant Nos.32100283 and 32071932)the Xinjiang ‘Tianchi Talent’ Recruitment Program, China。
文摘Cadmium(Cd) pollution has emerged as a critical global environmental concern, due to its significant toxicity, environmental persistence, and the pervasiveness of contamination. Significantly, the bioaccumulation of Cd in agricultural crops constitutes a primary vector for its entry into the human diet. This issue warrants urgent attention from both the scientific community and policymakers to develop and implement effective mitigation strategies. This review delves into the physiological impacts of Cd stress on plants, including the suppression of photosynthetic activity, amplification of oxidative stress, and disruptions in mineral nutrient homeostasis. Additionally, the resistance mechanisms deployed by plants in response to Cd stress have been explored, and the prospective contributions of molecular breeding strategies in augmenting crop tolerance to Cd and minimizing its bioaccumulation have been assessed. By integrating and analyzing these findings, we seek to inform future research trajectories and proffer strategic approaches to enhance agricultural sustainability, safeguard human health, and protect environmental integrity.
基金supported by the Science and Technology Planning Program of Guangdong Province(2013B020310010 and 2019B030301007)the Open Foundation of Key Laboratory for Agricultural Environment,Ministry of Agriculture and Rural Affairs,P.R.China.
文摘In acidic paddy fields of South China,rice(Oryza sativa L.)faces the dual challenges of cadmium(Cd)toxicity and silicon(Si)deficiency.Although previous studies have highlighted the functions of Si application timing and strategies in mitigating Cd-stressed rice,the precise mechanisms underlying the health restoration of Cd-toxic rice and the assurance of grain safety remain elusive.This study explored Cd translocation and detoxification in the shoots of rice regulated by various Si fertilization regimes:Si(T)(all Si added before transplanting),Si(J)(all Si added at jointing),and Si(TJ)(half Si added both before transplanting and at jointing).The findings revealed that the regime of Si(TJ)was more beneficial to rice health and grain safety than Si(T)and Si(J).The osmotic regulators such as proline,soluble sugars,and soluble proteins were significantly boosted by Si(TJ)compared to other Si treatments,and which enhanced membrane integrity,balanced intracellular pH,and increased Cd tolerance of rice.Furthermore,Si(TJ)was more effective than Si(T)and Si(J)on the Cd sequestration in the cell wall,Cd bio-passivation,and the down-regulated expression of the Cd transport genes.The concentrations of Cd in the xylem and phloem treated with Si(TJ)were reduced significantly.Additionally,Si(TJ)facilitated much more Cd bound with the outer layer proteins of grains,and promoted Cd chelation and complexation by phytic acid,phenolics,and flavonoids.Overall,Si(TJ)outperformed Si(T)and Si(J)in harmonizing the phycological processes,inhibiting Cd translocation,and enhancing Cd detoxification in rice plant.Thereby the split Si application strategy offers potential for reducing Cd toxicity in rice grain.
文摘Anthropogenic activities have greatly affected water resources on a global scale where the world is experiencing water quality and resources issues. Heavy metal is a crucial group of pollutants that is toxic to the environment even at low concentrations due to its bioaccumulation and biomagnification capabilities in living organisms. The detrimental effects of heavy metals on living organisms are due to their bioaccumulation in the aquatic ecosystem. Cadmium may result in adverse health effects due to its high toxicity. The study is conducted to determine the cadmium exposure effects on the morphometric indices of Anabas testudineus which are the Scaling Coefficient (SC) and Condition Factor (K) of such species. Anabas testudineus is exposed to four different cadmium treatment groups namely the control group, cadmium treatment group of 0.005 mg/L, 0.010 mg/L, and 0.015 mg/L for 16 weeks. The findings of the study have reported inconsistent trends in the values of SC and a decrease in the value of K with increasing cadmium concentration. The trend for the average SC has shown an overall decrease in value while the pattern of the K value is inconsistent in each treatment group with exposure time. Collectively, no significant differences for SC and K of A. testudineus in different treatment groups as well as comparison between treatment groups with time exposure.
基金Supported by the self-funded project of Kunming Institute of Physics。
文摘A medium wave(MW)640×512(25μm)Mercury Cadmium Telluride(HgCdTe)polarimetric focal plane array(FPA)was demonstrated.The micro-polarizer array(MPA)has been carefully designed in terms of line grating structure optimization and crosstalk suppression.A monolithic fabrication process with low damage was explored,which was verified to be compatible well with HgCdTe devices.After monolithic integration of MPA,NETD<9.5 mK was still maintained.Furthermore,to figure out the underlying mechanism that dominat⁃ed the extinction ratio(ER),specialized MPA layouts were designed,and the crosstalk was experimentally vali⁃dated as the major source that impacted ER.By expanding opaque regions at pixel edges to 4μm,crosstalk rates from adjacent pixels could be effectively reduced to approximately 2%,and promising ERs ranging from 17.32 to 27.41 were implemented.
基金Supported by the National Natural Science Foundation of China(20776054)~~
文摘[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinetics model, Gompertz model, Weibull model, Higuchi model and Logistic model were used to fit the BSA release profile from WSC carriers. [Result] Except Higuchi model and Logistic model, other models could fit BSA release profile better. [Conclusion] Gompertz two-order kinetics model could fit the release of WSC nano-particles better and model parameters had practical physical meaning.
文摘Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.
基金Supported by National Natural Science Foundation of China(30671240,30871588,41006097)Scientific Special Research Project of Ministry of Water Resources for Public Industry(200801028,200701031)+1 种基金Open Fund from Key Laboratory of Environmental Materials and Environmental Engineering of Jiangsu Province(K090025)Project of Yangzhou Polytechnic College of Environment and Resource(2010YZY-1)~~
文摘[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicidal substances. [Method] The effects of water-soluble extracts of Chinese chive on the growth of Microcystis aeruginosa under different pH, light and aeration conditions were compared and studied. [Result] The growth inhibition rate of water-soluble extracts of Chinese chive on M. aeruginosa was greater than 90% under different pH conditions. With the growth of M. aeruginosa, the culture liquid with different initial pH was finally tended to 9-9.5. The growth inhibition rate of water-soluble extracts of Chinese chive on algae cell increased with the prolongation of culture time within the light intensity range of 1 000-4 000 lx. The inhibition effect of water-soluble extracts of Chinese chive on M. aeruginosa under low light intensity(1 000 lx)was better than that under high light intensity, the best light intensity for growth was not conducive to the exertion of allelopathic effect. Meanwhile, aeration condition was more conducive to the inhibition effect of water-soluble extracts of Chinese chive on the growth of M. aeruginosa. [Conclusion] pH, light and aeration conditions all affected the inhibition effect of water-soluble extracts of Chinese chive treated by high temperature on M. aeruginosa. Understanding the effect of these environmental factors on algicidal effect of allelochemicals could provide reference for further study and development of new algicidal substances.
文摘The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 thm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kghm-2) of the cores with the thatch layer was higher than that (20 kghm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.
基金the Thailand Research Fund through Thai Basic Research Grant(BRG5680020 to V.B.J.)the Royal Golden Jubilee Ph.D.Program and Mahidol。
文摘Nanocrystals,a carrier-free colloidal delivery system in nano-sized range,is an interesting approach for poorly soluble drugs.Nanocrystals provide special features including enhancement of saturation solubility,dissolution velocity and adhesiveness to surface/cell membranes.Several strategies are applied for nanocrystals production including precipitation,milling,high pressure homogenization and combination methods such as Nano-Edge^(TM),SmartCrystal and Precipitation-lyophilization-homogenization(PLH)technology.For oral administration,many publications reported useful advantages of nanocrystals to improve in vivo performances i.e.pharmacokinetics,pharmacodynamics,safety and targeted delivery which were discussed in this review.Additionally,transformation of nanocrystals to final formulations and future trends of nanocrystals were also described.
文摘A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- 4, PO 3- 4), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 μg/m 3 to 500 μg/m 3(r = 0.999—0.9999). The relative standard deviation(RSD) were 0.43%—2.00% and the detection limits were from 2.7 ng/m 3 to 88 ng/m 3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM 2.5 of Beijing.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40525016.
文摘Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO4^2-, NO3^-, NO2^-, Cl^- and F- is below 0.3μg m^-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.
基金supported by the National Natural Science Foundation of China (No. 30771113, 30870810)the Program for New Century Excellent Talents in Universityprovided by the Caenorhabdits Genetics Center (funded by the NIH National Center for Research Resource, USA).
文摘Chemotaxis to water-soluble attractants is mainly controlled by ASE sensory neuron whose specification is regulated by che-1 in Caenorhabditis elegans. Our data suggested that exposure to high concentrations of metals, such as Pb, Cu, Ag, and Cr, would result in severe defects of chemotaxis to water-soluble attractants of NaCl, cAMP, and biotin. Moreover, the morphology of ASE neuron structures as observed by relative fluorescent intensities and relative size of fluorescent puncta of cell bodies, relative lengths of sensory endings in ASE neurons, and the expression patterns of che-1 were obviously altered in metal exposed animals when they meanwhile exhibited obvious chemotaxis defects to water-soluble attractants. In addition, the dendrite morphology could be noticeably changed in animals exposed to 150 μmol/L of Pb, Cu, and Ag. Furthermore, we observed significant decreases of chemotaxis to water-soluble attractants in Pb exposed che-1 mutant at concentrations more than 2.5 μmol/L, and in Cu, Ag, and Cr exposed che-1 mutant at concentrations more than 50 μmol/L. Therefore, impairment of the ASE neuron structures and functions may largely contribute to the appearance of chemotaxis defects to water-soluble attractants in metal exposed nematodes.
基金Supported by the Development Project of Jilin Province Science and Technology of China(No.20080344)
文摘A series of water-soluble polymers such as poly(ethylene oxide)(PEO), polyacrylamide(PAM) and poly(vinyl pyrrilidone)(PVP) was successfully prepared via the electrospinning of their aqueous solutions without the use of a surfactant. The effects of solution properties on the electrospinning of PEO, PAM and PVP solutions were investigated. The viscosity of the solution, charge density carried by the jet, and the surface tension of the solution are the key factors that influence the morphology and diameter size of the fibers. The viscosity of the solution was measured on a modular compact rheometer. The morphology and the diameter size distribution of the fibers were observed under an environmental scanning electron microscope(ESEM). The results show that the diameters of the nanofibers electro spun from the solutions of these water soluble polymers were uniform and less than 300 nm.