This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and ch...This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.展开更多
Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catal...Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.展开更多
Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,spec...Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.展开更多
Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are st...Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.展开更多
This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozon...This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.展开更多
Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study...Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.展开更多
Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,b...Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,based on the high-performance L8BO,we selected 3-ethylheptyl to substitute the inner chain of 2-ethylhexyl,obtaining the backbone of BON3.Then we introduced different halogen atoms of fluorine and chlorine on 2-(3-oxo-2,3-dihydro-1Hinden-1-ylidene)malononitrile end group(EG)to construct efficient NFAs named BON3-F and BON3-Cl,respectively.Polymer donor D18 was chosen to combine with two novel NFAs to construct OSC devices.Impressively,D18:BON3-Cl-based device shows a remarkable power conversion efficiency(PCE)of 18.57%,with a high open-circuit voltage(V_(OC))of 0.907 V and an excellent fill factor(FF)of 80.44%,which is one of the highest binary PCE of devices based on D18 as the donor.However,BON3-F-based device shows a relatively lower PCE of 17.79%with a decreased FF of 79.05%.The better photovoltaic performance is mainly attributed to the red-shifted absorption,higher electron and hole mobilities,reduced charge recombination,and enhanced molecular packing in the D18:BON3-Cl films.Also,we performed stability tests on two binary systems;the D18:BON3-Cl and D18:BON3-F devices maintain 88.1%and 85.5%of their initial efficiencies after 169 h of storage at 85°C in an N2-filled glove box,respectively.Our work demonstrates the importance of selecting halogen atoms on EG and provides an efficient binary system of D18:BON3-Cl for further improvement of PCE.展开更多
In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. La...In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.展开更多
[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinet...[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinetics model, Gompertz model, Weibull model, Higuchi model and Logistic model were used to fit the BSA release profile from WSC carriers. [Result] Except Higuchi model and Logistic model, other models could fit BSA release profile better. [Conclusion] Gompertz two-order kinetics model could fit the release of WSC nano-particles better and model parameters had practical physical meaning.展开更多
A method was developed for determination of chlorine and bromine in plant materials by ion chromatography using temperature programing-semi molten for sample preparation. Values of detection limits of the method found...A method was developed for determination of chlorine and bromine in plant materials by ion chromatography using temperature programing-semi molten for sample preparation. Values of detection limits of the method found were 1.0×10^-5 for CI and 1.3×10^-6 for Br. The measuring range of the method found were 0.3-20.0 mg/L for CI and 4,0-120,0 μg/L for Br. The results obtained agreed quite well with those reference values.展开更多
Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution...Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.展开更多
[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicida...[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicidal substances. [Method] The effects of water-soluble extracts of Chinese chive on the growth of Microcystis aeruginosa under different pH, light and aeration conditions were compared and studied. [Result] The growth inhibition rate of water-soluble extracts of Chinese chive on M. aeruginosa was greater than 90% under different pH conditions. With the growth of M. aeruginosa, the culture liquid with different initial pH was finally tended to 9-9.5. The growth inhibition rate of water-soluble extracts of Chinese chive on algae cell increased with the prolongation of culture time within the light intensity range of 1 000-4 000 lx. The inhibition effect of water-soluble extracts of Chinese chive on M. aeruginosa under low light intensity(1 000 lx)was better than that under high light intensity, the best light intensity for growth was not conducive to the exertion of allelopathic effect. Meanwhile, aeration condition was more conducive to the inhibition effect of water-soluble extracts of Chinese chive on the growth of M. aeruginosa. [Conclusion] pH, light and aeration conditions all affected the inhibition effect of water-soluble extracts of Chinese chive treated by high temperature on M. aeruginosa. Understanding the effect of these environmental factors on algicidal effect of allelochemicals could provide reference for further study and development of new algicidal substances.展开更多
The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory ...The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 thm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kghm-2) of the cores with the thatch layer was higher than that (20 kghm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.展开更多
Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. I...Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this paper, a full-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Cyclops removal was conducted in a waterworks. The experimental results were compared with that of the existing prechlorination process in several aspects: including the Cyclops removal efficiencies of water samples taken from the outlets of sedimentation tank and sand filter and the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Cyclops than chlorine and Cyclops could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that of prechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.展开更多
The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN softwar...The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results.Simulated waste,representative of typical MSW with and without chlorine compounds,was burned at the background temperature of 700 and 950°C,respectively.In the absence of chlorine,the moisture content has no evident effect on the volatility of Pb,Zn and Cu at either 700 or 950°C,however,as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700°C and reduced at 950°C,respectively.In the presence of chlorine,the flue gas moisture reduced the volatility of Pb,Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides,and the reduction became significant as chlorine content increase.For Cd,the chlorine promotes its volatility through the formation of more volatile CdCl 2.As a result,the increased moisture content increases the Pb,Zn,Cu and Cd concentrations in the bottom ash,which limits the utilization of the bottom ash as a construction material.Therefore,in order to accumulate heavy metals into the fly ash,MSW should be dried before incineration.展开更多
The variations in the isotopic compositions of chlorine in evaporation controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs 2Cl + ion by...The variations in the isotopic compositions of chlorine in evaporation controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs 2Cl + ion by thermal ionization mass spectrometry. The results showed that variation in δ 37 Cl values in these evaporation controlled brines are attributable to evaporation of brine accompanied by the deposition of saline minerals. The isotopic fractionation of chlorine between the deposited saline mineral and the co existing brine caused the variation of δ 37 Cl values in the brine. In general the isotopic fractionation of chlorine in nature indicates enrichment of 3 7Cl in the solid phase relative to 3 5Cl. The reverse isotopic fractionation of chlorine in which 3 5Cl is enriched in the solid phase, was observed to some extent during quick deposition under laboratory conditions as well as in nature. The mechanism of isotopic fractionation of chlorine during evaporation deposition was studied.展开更多
This paper deals with gold extraction from a refractory concentrate by chlorine leaching.The process considers a pre-treatment of refractory materials by low temperature oxidation carried out with low oxygen concentra...This paper deals with gold extraction from a refractory concentrate by chlorine leaching.The process considers a pre-treatment of refractory materials by low temperature oxidation carried out with low oxygen concentration.The oxidized material is treated by leaching with brine.After gold adsorption/reduction onto activated carbon,iron and base metals can be precipitated by NaOH.Roasting tests show the necessity to carry out a thermal pre-treatment at least at 550°C to obtain a reduction of sulfur and mercury in the material(50%and 90%,respectively).Highest gold extraction yield(around 93%)is obtained in the leaching test performed with material sample treated at 650°C.This result confrms the necessity to optimize the thermal pre-treatment to improve Au recovery and to reduce chlorine consumption.A comparison with conventional cyanidation confrms that chlorination could be an useful alternative:in fact,gold extraction yield is quite low:57%in non-pre-treated material and 25%in pre-treatment material.展开更多
Objective To prepare and evaluate novel chlorine dioxide-based disinfectant powder in single-pack that is more convenient for use and transportation. Methods Orthogonal experiment was performed to determine the recipe...Objective To prepare and evaluate novel chlorine dioxide-based disinfectant powder in single-pack that is more convenient for use and transportation. Methods Orthogonal experiment was performed to determine the recipe of the disinfectant powder. Stability test, suspension quantitative bactericidal test, simulation field triM, and animal toxicity test were carded out to observe its bactericidal and toxicological effects. Results The orthogonal experiment showed that the type of water solution had no effect on the disinfectant powder and the best ratio of sodium chlorite to solid acid was 1:3. Ten grams of the disinfectant powder was fully dissolved in 20 mL water for 2 min, and diluted to 500 mL in water. After 5-10 min, the concentration of chlorine dioxide (CIO2) solution was 266 mg/L to 276 mg/L. After stored at 54℃ for 14 d, the average concentration of CIO2 was decreased by 5.03%. Suspension quantitative bactericidal test showed that the average killing logarithm (KL) value for both Staphylococcus aureus and Escherichia coli in 100 mg/L CIO2 solution for 2 min was over 5.00. In simulation field triM, the average descending KL value for Escherichia coli in the solution containing 100 mg/L CIO2 for 5 min was over 3.00. The mouse acute LD50 in the solution 5 times exceeded 5000 mg/kg. The disinfectant powder was not toxic and irritative to rabbit skin and had no mutagenic effect on mouse marrow polychromatic erythrocytes (PCE). Conclusion The stability and bactericidal efficacy of solid chlorine dioxide-based disinfectant powder in single-pack are good. The solution containing 100 mg/L CIO2 can kill vegetative forms of bacteria. The concentration of CIO2 on the disinfecting surface of objects is 100 mg/L. The disinfectant powder is not toxic and irritative.展开更多
Chlorine source is indispensable for polychlorinated dibenzo-p-dioxin and furan (PCDD/F) formation during municipal solid waste (MSW) incineration. Inorganic chlorine compounds were employed in this study to inves...Chlorine source is indispensable for polychlorinated dibenzo-p-dioxin and furan (PCDD/F) formation during municipal solid waste (MSW) incineration. Inorganic chlorine compounds were employed in this study to investigate their effects on PCDD/F formation through heterogeneous synthesis on fly ash surfaces. A fly ash sample obtained from a fluidized bed incinerator was sieved to different size fractions which served as the PCDD/F formation sources. The capability of different metal chlorides which facilitate the formation of PCDDs/Fs was found to follow the trends: Na 〈 Mg 〈 K 〈 AI 〈 Ca, when two particle fractions of 〉177 μm and 104-125 μm were used in the experiments. However, the capability of NaCI, MgCl2 and KCI did not seem much different from each other, whereas CaCl2 and AlCl3 were much more active in PCDD/F formation. NaCl and MgCl2 were relatively effective to produce more PCDDs, while KC1, AICl3 and CaCl2 generated more PCDFs during heterogeneous reactions occurring on fly ash. 2,3,7,8-TCDF was the most significant contributor to the toxicity of the PCDDs/Fs formed from inorganic chlorine sources. Decreasing the sizes of fly ash particles led to more active formation of PCDDs/Fs when NaCl was used as inorganic chlorine in the experiment. The highest PCDDs/Fs produced from particles with size 〈37 μm, while the lowest PCDDs/Fs produced from particles with size 〉177μm. The toxicity generally increased with decreasing size of the fly ash particles. The formation of PCDDs was mainly facilitated by the two size fractions, 104-125 μm and 〈37μm, while the formation of PCDFs was favored by the two other size fractions, 〉177 μm and 53-104 μm.展开更多
For the first time, kinetics of aniline oxidation with chlorine dioxide(ClO 2) were investigated systematically by detecting concentration of aniline with HPLC at regular intervals. Results showed that the reaction w...For the first time, kinetics of aniline oxidation with chlorine dioxide(ClO 2) were investigated systematically by detecting concentration of aniline with HPLC at regular intervals. Results showed that the reaction was first-order both in ClO 2 and in aniline, and the oxidation reaction could be described as second-order reaction. Stoichiometric factor η was experimentally determined to be 2 44. The second-order-reaction rate constant k was 0 11 L/(mol·s) under condition of pH 6 86 and water temperature(T w) 287K. Reaction activation energy was 72 31 kJ/mol, indicating that the reaction could take place under usual water treatment conditions. The reaction rate constants in acidic and alkali media were greater than that in neutral medium. Chlorite ion could slightly increase reaction rate in acidic medium. p-aminophenol and azobenzene were detected by GC-MS as intermediates.展开更多
文摘This paper presents a system approach of mass balance calculations of ozone and other species under diffusion-convection-reaction processes to study the impacts of major ozone-depleting chemicals, chlorine (Cl) and chlorine monoxide (ClO), and the effect of photolysis on ozone concentrations, ozone depletion, total ozone abundance, and ozone layer along the altitude in the stratosphere. The calculated ozone concentrations and profile of the layer followed a similar trend and were generally in good agreement with the measurements above the tropical area. The calculated peak of the layer was at the same mid-stratosphere at Z = 30 km with a peak concentration and total ozone abundance about 20% higher than the measured peak concentration of 8.0 ppm and total abundance of 399 DU. In the presence of Cl and ClO, the calculated ozone concentrations and total abundance were substantially reduced. Cl generally depleted more uniformly of ozone across the altitude, while ClO reduced substantially the ozone in the upper stratosphere and thus shifted the peak of the layer to a much lower elevation at Z = 14 km. Although both ClO and Cl are active ozone-depleting chemicals, ClO was found to have a more pronounced impact on ozone depletion and distribution than Cl. The possible explanations of these interesting phenomena were discussed and elaborated. The approach and calculations in this paper were shown to be useful in providing an initial insight into the structure and behavior of the complex ozone layer.
基金the National Natural Science Foundation of China(U21A20286,22206054 and 21805069)Natural Science Foundation of Hubei(2021CFB094)the Fundamental Research Funds for the Central China Normal University(CCNU)for financial support。
文摘Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.
基金This study was supported by the National Nat-ural Science Foundation of China(No.22379105)the Natural Sci-ence Foundation of Shanxi Province(Nos.20210302123110 and 202303021211059)the Open Fund Project of Ningxia Sinostar Display Material Co.,Ltd.
文摘Although doped hole-transport materials(HTMs)off er an effi ciency benefi t for perovskite solar cells(PSCs),they inevi-tably diminish the stability.Here,we describe the use of various chlorinated small molecules,specifi cally fl uorenone-triphenylamine(FO-TPA)-x-Cl[x=para,meta,and ortho(p,m,and o)],with diff erent chlorine-substituent positions,as dopant-free HTMs for PSCs.These chlorinated molecules feature a symmetrical donor-acceptor-donor structure and ideal intramolecular charge transfer properties,allowing for self-doping and the establishment of built-in potentials for improving charge extraction.Highly effi cient hole-transfer interfaces are constructed between perovskites and these HTMs by strategi-cally modifying the chlorine substitution.Thus,the chlorinated HTM-derived inverted PSCs exhibited superior effi ciencies and air stabilities.Importantly,the dopant-free HTM FO-TPA-o-Cl not only attains a power conversion effi ciency of 20.82% but also demonstrates exceptional stability,retaining 93.8%of its initial effi ciency even after a 30-day aging test conducted under ambient air conditions in PSCs without encapsulation.These fi ndings underscore the critical role of chlorine-substituent regulation in HTMs in ensuring the formation and maintenance of effi cient and stable PSCs.
基金supported by the National Natural Science Foundation of China(Grant No.51708078)Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQ-MSX0815)+2 种基金Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202200542)the Chongqing Innovative Research Group Project(Grant No.CXQT21015)Foundation of Chongqing Normal University(22XLB022).
文摘Photocatalytic CO_(2)reduction to produce high value-added carbon-based fuel has been proposed as a promising approach to mitigate global warming issues.However,the conversion efficiency and product selectivity are still low due to the sluggish dynamics of transfer processes involved in proton-assisted multi-electron reactions.Lowering the formation energy barriers of intermediate products is an effective method to enhance the selectivity and productivity of final products.In this study,we aim to regulate the surface electronic structure of Bi_(2)WO_(6)by doping surface chlorine atoms to achieve effective photocatalytic CO_(2)reduction.Surface Cl atoms can enhance the absorption ability of light,affect its energy band structure and promote charge separation.Combined with DFT calculations,it is revealed that surface Cl atoms can not only change the surface charge distribution which affects the competitive adsorption of H_(2)O and CO_(2),but also lower the formation energy barrier of intermediate products to generate more intermediate*COOH,thus facilitating CO production.Overall,this study demonstrates a promising surface halogenation strategy to enhance the photocatalytic CO_(2)reduction activity of a layered structure Bi-based catalyst.
文摘This paper presents an engineering system approach using a 2D model of conservation of mass to study the dynamics of ozone and concerned chemical species in the stratosphere.By considering all fourteen photolysis,ozone-generating,and-depleting chemical reactions,the model calculated the transient,spatial changes of ozone under different physical-chemical-radiative conditions.Validation against the measured data demonstrated good accuracy,close match of our model with the observed ozone concentrations at both 20°S and 90°N locations.The deviation in the average concentration was less than 1% and in ozone profiles less than 17%.The impacts of various chlorine-(Cl),nitrogen oxides-(NO_(x)),and bromine-(Br)depleting cycles on ozone concentrations and distribution were investigated.The chlorine catalytic depleting cycle was found to exhibit the most significant impact on ozone dynamics,confirming the key role of chlorine in the problem of ozone depletion.Sensitivity analysis was conducted with levels of 25%,50%,100%,200%,and 400% of the baseline value.The combined cycles(Cl+NO_(x)+Br)showed the most significant influence on ozone behavior.The total ozone abundance above the South Pole could decrease by a small 3%,from 281 DU(Dubson Units)to 273 DU for the 25% level,or by a huge thinning of 60%to 114 DU for the 400% concentration level.When the level of chlorine gases increased beyond 200%,it would cause ozone depletion to a level of ozone hole(below 220 DU).The 2D Ozone Model presented in this paper demonstrates robustness,convenience,efficiency,and executability for analyzing complex ozone phenomena in the stratosphere.
基金funded by the Foundation of State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants(Grant No.SEPKL-EHIAEC-202210)the Foundation of Shanghai Municipal Health Commission(Grant No.202240327)the Key Discipline Project of the Three-year Action Plan for Strengthening Public Health System Construction in Shanghai(2023-2025)(Grant No.GWVI-11.1-38)。
文摘Objective Chlorination is often used to disinfect recreational water in large amusement parks;however,the health hazards of chlorination disinfection by-products(DBPs)to occupational populations are unknown.This study aimed to assess the exposure status of chlorinated DBPs in recreational water and the health risks to employees of large amusement parks.Methods Exposure parameters of employees of three large amusement parks in Shanghai were investigated using a questionnaire.Seven typical chlorinated DBPs in recreational water and spray samples were quantified by gas chromatography,and the health risks to amusement park employees exposed to chlorinated DBPs were evaluated according to the WHO's risk assessment framework.Results Trichloroacetic acid,dibromochloromethane,bromodichloromethane,and dichloroacetic acid were detected predominantly in recreational water.The carcinogenic and non-carcinogenic risks of the five DBPs did not exceed the risk thresholds.In addition,the carcinogenic and non-carcinogenic risks of mixed exposure to DBPs were within the acceptable risk limits.Conclusion Typical DBPs were widely detected in recreational water collected from three large amusement parks in Shanghai;however,the health risks of DBPs and their mixtures were within acceptable limits.
基金supported by the National Natural Science Foundation of China(No.U21A20331)the National Science Fund for Distinguished Young Scholars(No.21925506)+3 种基金Zhejiang Provincial Natural Science Foundation of China(No.LQ22E030013)Ningbo Key Scientific and Technological Project(2022Z117)Ningbo Public Welfare Science and Technology Planning Project(2021S149)ZBTI Scientific Research Innovation Team(KYTD202105).
文摘Designing novel nonfullerene acceptors(NFAs)is of vital importance for the development of organic solar cells(OSC).Modification on the side chain and end group are two powerful tools to construct efficient NFAs.Here,based on the high-performance L8BO,we selected 3-ethylheptyl to substitute the inner chain of 2-ethylhexyl,obtaining the backbone of BON3.Then we introduced different halogen atoms of fluorine and chlorine on 2-(3-oxo-2,3-dihydro-1Hinden-1-ylidene)malononitrile end group(EG)to construct efficient NFAs named BON3-F and BON3-Cl,respectively.Polymer donor D18 was chosen to combine with two novel NFAs to construct OSC devices.Impressively,D18:BON3-Cl-based device shows a remarkable power conversion efficiency(PCE)of 18.57%,with a high open-circuit voltage(V_(OC))of 0.907 V and an excellent fill factor(FF)of 80.44%,which is one of the highest binary PCE of devices based on D18 as the donor.However,BON3-F-based device shows a relatively lower PCE of 17.79%with a decreased FF of 79.05%.The better photovoltaic performance is mainly attributed to the red-shifted absorption,higher electron and hole mobilities,reduced charge recombination,and enhanced molecular packing in the D18:BON3-Cl films.Also,we performed stability tests on two binary systems;the D18:BON3-Cl and D18:BON3-F devices maintain 88.1%and 85.5%of their initial efficiencies after 169 h of storage at 85°C in an N2-filled glove box,respectively.Our work demonstrates the importance of selecting halogen atoms on EG and provides an efficient binary system of D18:BON3-Cl for further improvement of PCE.
文摘In this study, based on the simulated discharge results of chemical disinfectants, hypocotyl germination concentration gradient pre-test and concentration gradient determination experiment were set up respectively. Laboratory cultivation was conducted to compare and analyze the root germination and germination indexes, three mangrove hypocotyls of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. Rhynchopetalas’ efficiency of cumulative root germination, cumulative germination and the cumulative expansion of the second pair of leaves, one-way analysis of variance was used to obtain the tolerance threshold of three mangrove hypocotyls to strong chlorin disinfectant. The study determined that the by-products of strong chlorin disinfectant, the toxic threshold concentrations of Kandelia candel (Linn.) Druce, Ceriopstagal C.B. Rob. and Bruguiera sexangula var. rhynchopetala are close to 0.55 mg/L, 0.55 mg/L and 0.25 mg/L, respectively. This concentration range is lower than the average concentration of 1.183 mg/L of active chlorine emitted from strong chlorine concentrate during pond clearing in high-level shrimp ponds, indicating that transient emissions of strong chlorine concentrate during pond clearing can have a toxic effect on mangrove plants. The strength of tolerance of the embryonic axes of the three mangrove species to effective chlorine contamination was, Ceriopstagal C.B. Rob. stronger than Bruguiera sexangula var. rhynchopetala, and Kandelia candel (Linn.) Druce is the weakest.
基金Supported by the National Natural Science Foundation of China(20776054)~~
文摘[Objective] The experiment aimed to explore release rule of water-soluble chitosan (WSC) in vitro. [Method]The bovine serum albumin(BSA) was taken as a model protein drug and some existing release models such as Kinetics model, Gompertz model, Weibull model, Higuchi model and Logistic model were used to fit the BSA release profile from WSC carriers. [Result] Except Higuchi model and Logistic model, other models could fit BSA release profile better. [Conclusion] Gompertz two-order kinetics model could fit the release of WSC nano-particles better and model parameters had practical physical meaning.
文摘A method was developed for determination of chlorine and bromine in plant materials by ion chromatography using temperature programing-semi molten for sample preparation. Values of detection limits of the method found were 1.0×10^-5 for CI and 1.3×10^-6 for Br. The measuring range of the method found were 0.3-20.0 mg/L for CI and 4,0-120,0 μg/L for Br. The results obtained agreed quite well with those reference values.
文摘Hydrophobically associating water-soluble polymers (HPAP) have been synthesized from acrylamide(AM), acrylate (AA), 2-acrylamido-2-methyl propane sulfonic acid (AMPS) and hydrophobic monomer (AP) in aqueous solution by radical polymerization. New polymer drilling fluids are made up of HPAP, which is used as viscosifiers and encapsulation agents. Properties of this system are reported in this paper. Results indicate that this system has a high value of yield point to plastic viscosity (YP/PV≥0.7), high viscosity at a low-shear rate (LSRV≥30000mPa·s), excellent shear thinning behavior, good solid-carrying behavior, resistance to shear, good thermal stability (as high as 140℃) and salt resistance. The system has excellent behavior in high-density solution of NaCl and in calcium and magnesium rich saline solutions. Hence, HPAP also can be used in saltwater polymer drilling fluids.
基金Supported by National Natural Science Foundation of China(30671240,30871588,41006097)Scientific Special Research Project of Ministry of Water Resources for Public Industry(200801028,200701031)+1 种基金Open Fund from Key Laboratory of Environmental Materials and Environmental Engineering of Jiangsu Province(K090025)Project of Yangzhou Polytechnic College of Environment and Resource(2010YZY-1)~~
文摘[Objective] The paper was to study the algicidal effect of water-soluble extracts of Chinese chive under different environmental conditions, so as to provide reference for further study and development of new algicidal substances. [Method] The effects of water-soluble extracts of Chinese chive on the growth of Microcystis aeruginosa under different pH, light and aeration conditions were compared and studied. [Result] The growth inhibition rate of water-soluble extracts of Chinese chive on M. aeruginosa was greater than 90% under different pH conditions. With the growth of M. aeruginosa, the culture liquid with different initial pH was finally tended to 9-9.5. The growth inhibition rate of water-soluble extracts of Chinese chive on algae cell increased with the prolongation of culture time within the light intensity range of 1 000-4 000 lx. The inhibition effect of water-soluble extracts of Chinese chive on M. aeruginosa under low light intensity(1 000 lx)was better than that under high light intensity, the best light intensity for growth was not conducive to the exertion of allelopathic effect. Meanwhile, aeration condition was more conducive to the inhibition effect of water-soluble extracts of Chinese chive on the growth of M. aeruginosa. [Conclusion] pH, light and aeration conditions all affected the inhibition effect of water-soluble extracts of Chinese chive treated by high temperature on M. aeruginosa. Understanding the effect of these environmental factors on algicidal effect of allelochemicals could provide reference for further study and development of new algicidal substances.
文摘The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 thm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kghm-2) of the cores with the thatch layer was higher than that (20 kghm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.
文摘Cyclops of zooplankton propagated excessively in eutrophic water body and could not be effectively inactivated by the conventional disinfections process like chlorination due to its stronger resistance to oxidation. In this paper, a full-scale study of chlorine dioxide preoxidation cooperating with routine clarification process for Cyclops removal was conducted in a waterworks. The experimental results were compared with that of the existing prechlorination process in several aspects: including the Cyclops removal efficiencies of water samples taken from the outlets of sedimentation tank and sand filter and the security of drinking water and so on. The results showed that chlorine dioxide might be more effective to inactivate Cyclops than chlorine and Cyclops could be thoroughly removed from water by pre-dosing chlorine dioxide process. The GC-MS examination and Ames test further showed that the sort and amount of organic substance in the treated water by chlorine dioxide preoxidation were evidently less than that of prechlorination and the mutagenicity of drinking water treated by pre-dosing chlorine dioxide was substantially reduced compared with prechlorination.
基金supported by the National Natural Science Foundation of China (No. 50776007)the Beijing Municipal Science and Technology Commission under the Municipal Solid Waste Development Program(No. H020620330120)
文摘The impact of moisture on the partitioning of the heavy metals including Pb,Zn,Cu and Cd in municipal solid waste (MSW) was studied in a laboratory tubular furnace.A thermodynamic investigation using CHEMKIN software was performed to compare the experimental results.Simulated waste,representative of typical MSW with and without chlorine compounds,was burned at the background temperature of 700 and 950°C,respectively.In the absence of chlorine,the moisture content has no evident effect on the volatility of Pb,Zn and Cu at either 700 or 950°C,however,as flue gas moisture increasing the Cd distribution in the bottom ash increased at 700°C and reduced at 950°C,respectively.In the presence of chlorine,the flue gas moisture reduced the volatility of Pb,Zn and Cu due to the transformation of the more volatile metal chlorides into less volatile metal oxides,and the reduction became significant as chlorine content increase.For Cd,the chlorine promotes its volatility through the formation of more volatile CdCl 2.As a result,the increased moisture content increases the Pb,Zn,Cu and Cd concentrations in the bottom ash,which limits the utilization of the bottom ash as a construction material.Therefore,in order to accumulate heavy metals into the fly ash,MSW should be dried before incineration.
文摘The variations in the isotopic compositions of chlorine in evaporation controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs 2Cl + ion by thermal ionization mass spectrometry. The results showed that variation in δ 37 Cl values in these evaporation controlled brines are attributable to evaporation of brine accompanied by the deposition of saline minerals. The isotopic fractionation of chlorine between the deposited saline mineral and the co existing brine caused the variation of δ 37 Cl values in the brine. In general the isotopic fractionation of chlorine in nature indicates enrichment of 3 7Cl in the solid phase relative to 3 5Cl. The reverse isotopic fractionation of chlorine in which 3 5Cl is enriched in the solid phase, was observed to some extent during quick deposition under laboratory conditions as well as in nature. The mechanism of isotopic fractionation of chlorine during evaporation deposition was studied.
文摘This paper deals with gold extraction from a refractory concentrate by chlorine leaching.The process considers a pre-treatment of refractory materials by low temperature oxidation carried out with low oxygen concentration.The oxidized material is treated by leaching with brine.After gold adsorption/reduction onto activated carbon,iron and base metals can be precipitated by NaOH.Roasting tests show the necessity to carry out a thermal pre-treatment at least at 550°C to obtain a reduction of sulfur and mercury in the material(50%and 90%,respectively).Highest gold extraction yield(around 93%)is obtained in the leaching test performed with material sample treated at 650°C.This result confrms the necessity to optimize the thermal pre-treatment to improve Au recovery and to reduce chlorine consumption.A comparison with conventional cyanidation confrms that chlorination could be an useful alternative:in fact,gold extraction yield is quite low:57%in non-pre-treated material and 25%in pre-treatment material.
文摘Objective To prepare and evaluate novel chlorine dioxide-based disinfectant powder in single-pack that is more convenient for use and transportation. Methods Orthogonal experiment was performed to determine the recipe of the disinfectant powder. Stability test, suspension quantitative bactericidal test, simulation field triM, and animal toxicity test were carded out to observe its bactericidal and toxicological effects. Results The orthogonal experiment showed that the type of water solution had no effect on the disinfectant powder and the best ratio of sodium chlorite to solid acid was 1:3. Ten grams of the disinfectant powder was fully dissolved in 20 mL water for 2 min, and diluted to 500 mL in water. After 5-10 min, the concentration of chlorine dioxide (CIO2) solution was 266 mg/L to 276 mg/L. After stored at 54℃ for 14 d, the average concentration of CIO2 was decreased by 5.03%. Suspension quantitative bactericidal test showed that the average killing logarithm (KL) value for both Staphylococcus aureus and Escherichia coli in 100 mg/L CIO2 solution for 2 min was over 5.00. In simulation field triM, the average descending KL value for Escherichia coli in the solution containing 100 mg/L CIO2 for 5 min was over 3.00. The mouse acute LD50 in the solution 5 times exceeded 5000 mg/kg. The disinfectant powder was not toxic and irritative to rabbit skin and had no mutagenic effect on mouse marrow polychromatic erythrocytes (PCE). Conclusion The stability and bactericidal efficacy of solid chlorine dioxide-based disinfectant powder in single-pack are good. The solution containing 100 mg/L CIO2 can kill vegetative forms of bacteria. The concentration of CIO2 on the disinfecting surface of objects is 100 mg/L. The disinfectant powder is not toxic and irritative.
基金Project supported by the National Natural Science Foundation of China(No.59878047)the National Key Basic Research Special Funds Projectof China(No.1999022211)+1 种基金the Key Project of National Natural Science Foundation(No.59836210)Zhejiang Province Natural Science Foundation(No.X206955).
文摘Chlorine source is indispensable for polychlorinated dibenzo-p-dioxin and furan (PCDD/F) formation during municipal solid waste (MSW) incineration. Inorganic chlorine compounds were employed in this study to investigate their effects on PCDD/F formation through heterogeneous synthesis on fly ash surfaces. A fly ash sample obtained from a fluidized bed incinerator was sieved to different size fractions which served as the PCDD/F formation sources. The capability of different metal chlorides which facilitate the formation of PCDDs/Fs was found to follow the trends: Na 〈 Mg 〈 K 〈 AI 〈 Ca, when two particle fractions of 〉177 μm and 104-125 μm were used in the experiments. However, the capability of NaCI, MgCl2 and KCI did not seem much different from each other, whereas CaCl2 and AlCl3 were much more active in PCDD/F formation. NaCl and MgCl2 were relatively effective to produce more PCDDs, while KC1, AICl3 and CaCl2 generated more PCDFs during heterogeneous reactions occurring on fly ash. 2,3,7,8-TCDF was the most significant contributor to the toxicity of the PCDDs/Fs formed from inorganic chlorine sources. Decreasing the sizes of fly ash particles led to more active formation of PCDDs/Fs when NaCl was used as inorganic chlorine in the experiment. The highest PCDDs/Fs produced from particles with size 〈37 μm, while the lowest PCDDs/Fs produced from particles with size 〉177μm. The toxicity generally increased with decreasing size of the fly ash particles. The formation of PCDDs was mainly facilitated by the two size fractions, 104-125 μm and 〈37μm, while the formation of PCDFs was favored by the two other size fractions, 〉177 μm and 53-104 μm.
文摘For the first time, kinetics of aniline oxidation with chlorine dioxide(ClO 2) were investigated systematically by detecting concentration of aniline with HPLC at regular intervals. Results showed that the reaction was first-order both in ClO 2 and in aniline, and the oxidation reaction could be described as second-order reaction. Stoichiometric factor η was experimentally determined to be 2 44. The second-order-reaction rate constant k was 0 11 L/(mol·s) under condition of pH 6 86 and water temperature(T w) 287K. Reaction activation energy was 72 31 kJ/mol, indicating that the reaction could take place under usual water treatment conditions. The reaction rate constants in acidic and alkali media were greater than that in neutral medium. Chlorite ion could slightly increase reaction rate in acidic medium. p-aminophenol and azobenzene were detected by GC-MS as intermediates.