To understand the physical and chemical characteristics, particle size distribution and sources of size-separated aerosols in Lhasa, which is located on the Tibetan Plateau(TP), six sizes of aerosol samples were colle...To understand the physical and chemical characteristics, particle size distribution and sources of size-separated aerosols in Lhasa, which is located on the Tibetan Plateau(TP), six sizes of aerosol samples were collected in Lhasa in 2014. Ca^(2+), NH_4^+, NO_3^-,SO_4^(2-)and Cl-were the dominant ions. The ratio of cation equivalents(CE) to anion equivalents(AE) for each particle size segment indicated that the atmospheric aerosols in Lhasa were alkaline. SO_4^(2-)and NO_3^-could be neutralized by Ca^(2+), but could not be neutralized by NH_4^+, according to the [NH_4^+]/[NO_3^-+ SO_4^(2-)] and [Ca^(2+)]/[NO_3^-+ SO_4^(2-)] ratios. Mobile sources were dominant in PM_(0.95-1.5),PM_(1.5-3) and PM_(3-7.2), while stationary sources were dominant in the other three size fractions according to the [NO_3^-]/[SO_4^(2-)] ratios. The particle size distribution of all watersoluble ions during monsoon and non-monsoon periods was characterized by a bimodal distribution due to the different sources and formation mechanisms, and it was revealed that different ions had different sources in different seasons and different particle size segments by combining particle size distribution with correlation analysis. Source analysis of aerosols in Lhasa was performed using the Principal component analysis(PCA) for the first time, which revealed that combustion sources, motor vehicle exhaust, photochemical reaction sources and various types of dust were the main sources of Lhasa aerosols.Furthermore, Lhasa's air quality was also affected by long-distance transmission, expressed as pollutants from South Asia and West Asia, which were transmitted to Lhasa according to backward trajectory analysis.展开更多
Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental q...Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental quality,and the changes and related relationships of water-soluble ions and particulate matter elements were analyzed.The results showed that winter transit air masses had a significant impact on the air quality in Hengyang.In the quantitative comparison of the primary pollutant contribution during the transit period of air masses,local sources and transit sources each accounted for half,and the impact of transit source on ambient air quality was much greater than that of seasonal base increase.Fine particulate matter was closely related to secondary ions,and particulate matter was closely related to primary ions.The transit of air masses promoted the improvement of secondary ion conversion rate,and the unit increment of fine particulate matter was greater than that of particulate matter.During the transit period,the mass concentrations of most water-soluble ions and most particulate matter elements maintained synchronous growth,with a superimposed effect.The composition ratio of organic carbon and nitrate ions increased,while the composition ratio of ammonia and sulfate ions decreased.Both disposable ions and secondary conversions in the composition of PM_(2.5)had increases and decreases.The high conversion rate of nitrate and the high composition ratio of ammonia radical in Hengyang indicated that transportation source factors had a significant impact on the local environmental quality of Hengyang.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11775180,11475082 and 41603096)the Graduate Student Research Innovation Project of Hunan Province(No.2014SCX03)the General Program of the Hunan,Provincial Education Department(No.17C1353)
文摘To understand the physical and chemical characteristics, particle size distribution and sources of size-separated aerosols in Lhasa, which is located on the Tibetan Plateau(TP), six sizes of aerosol samples were collected in Lhasa in 2014. Ca^(2+), NH_4^+, NO_3^-,SO_4^(2-)and Cl-were the dominant ions. The ratio of cation equivalents(CE) to anion equivalents(AE) for each particle size segment indicated that the atmospheric aerosols in Lhasa were alkaline. SO_4^(2-)and NO_3^-could be neutralized by Ca^(2+), but could not be neutralized by NH_4^+, according to the [NH_4^+]/[NO_3^-+ SO_4^(2-)] and [Ca^(2+)]/[NO_3^-+ SO_4^(2-)] ratios. Mobile sources were dominant in PM_(0.95-1.5),PM_(1.5-3) and PM_(3-7.2), while stationary sources were dominant in the other three size fractions according to the [NO_3^-]/[SO_4^(2-)] ratios. The particle size distribution of all watersoluble ions during monsoon and non-monsoon periods was characterized by a bimodal distribution due to the different sources and formation mechanisms, and it was revealed that different ions had different sources in different seasons and different particle size segments by combining particle size distribution with correlation analysis. Source analysis of aerosols in Lhasa was performed using the Principal component analysis(PCA) for the first time, which revealed that combustion sources, motor vehicle exhaust, photochemical reaction sources and various types of dust were the main sources of Lhasa aerosols.Furthermore, Lhasa's air quality was also affected by long-distance transmission, expressed as pollutants from South Asia and West Asia, which were transmitted to Lhasa according to backward trajectory analysis.
文摘Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental quality,and the changes and related relationships of water-soluble ions and particulate matter elements were analyzed.The results showed that winter transit air masses had a significant impact on the air quality in Hengyang.In the quantitative comparison of the primary pollutant contribution during the transit period of air masses,local sources and transit sources each accounted for half,and the impact of transit source on ambient air quality was much greater than that of seasonal base increase.Fine particulate matter was closely related to secondary ions,and particulate matter was closely related to primary ions.The transit of air masses promoted the improvement of secondary ion conversion rate,and the unit increment of fine particulate matter was greater than that of particulate matter.During the transit period,the mass concentrations of most water-soluble ions and most particulate matter elements maintained synchronous growth,with a superimposed effect.The composition ratio of organic carbon and nitrate ions increased,while the composition ratio of ammonia and sulfate ions decreased.Both disposable ions and secondary conversions in the composition of PM_(2.5)had increases and decreases.The high conversion rate of nitrate and the high composition ratio of ammonia radical in Hengyang indicated that transportation source factors had a significant impact on the local environmental quality of Hengyang.