The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
A novel and effective water-soluble aldehydes(β-HA)as corrosion inhibitor was synthesized for N80 steel corro-sion in 15%HCl solution,and the corrosion inhibition performance was evaluated by using weight loss,electr...A novel and effective water-soluble aldehydes(β-HA)as corrosion inhibitor was synthesized for N80 steel corro-sion in 15%HCl solution,and the corrosion inhibition performance was evaluated by using weight loss,electro-chemical measurements,scanning electron microscope(SEM),quantum chemical calculation and molecular dynamics simulation(MDS).The results show that synthesizedβ-HA showed excellent corrosion performance compared with MHB and PE for carbon steel in 15%HCl solution compared with MHB and PE,and the inhibi-tion efficiency increased with increasing concentration of the inhibitor.The inhibition efficiency of β-HA at 8 mmol/L reached the maximum value 94.08%.The inhibitor acted as mixed-type inhibitor via blocking both the anodic and cathodic reaction.The adsorption of inhibitors on N80 steel surface obeyed Langmuir adsorption isotherm,and the process contained chemisorption and physisorption.TheΔG ads of β-HA was−28.81 kJ·mol^(-1)der the standard atmospheric pressure.Moreover,the theoretical calculation parameters revealed stronger combination and higher interaction energy for inhibitor β-HA comparing with MHB and PE,further demonstrat-ing the correlation between the theoretical and experimental results.展开更多
Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material co...Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.展开更多
The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron m...The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron microscopy,and energy dispersion spectroscopy.The results demonstrate that the addition of CaTiO_(3)corrosion inhibitor efficiently passivates the carbon anode and leads to the formation of a dense CaTiO_(3)layer during the electrolysis process in molten CaCl_(2)-CaO.Subsequently,the passivated carbon anode effectively undergoes the oxygen evolution reaction,with an optimal current density for passivation identified at 400 m A/cm^(2).Comprehensive investigations,including CaTiO_(3)solubility tests in molten CaCl_(2)-CaO and numerical modeling of the stability of complex ionic structures,provide compelling evidence supporting“complexation-precipitation”passivation mechanism.This mechanism involves the initial formation of a complex containing TiO_(2)·nCaO by CaTiO_(3)and CaO,which subsequently decomposes to yield CaTiO_(3),firmly coating the surface of the carbon anode.In practical applications,the integration of CaTiO_(3)corrosion inhibitor with the carbon anode leads to the successful preparation of the FeCoNiCrMn high-entropy alloy without carbon contamination in the molten CaCl_(2)-CaO.展开更多
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica...Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.展开更多
Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we h...Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we have investigated in this paper Aloe vera extracts as a green corrosion inhibitor for reinforcing steel in NaCl environments. Using electrochemical methods (zero-intensity chronopotentiometry, Tafel lines and electrochemical impedance spectroscopy), this experimental work investigated the effect of these Aloe vera (AV) extracts on corrosion inhibition of concrete reinforcing bar (HA, diameter 12mm) immersed in a 0.5M NaCl solution. The results show that Aloe vera extracts have an average corrosion-inhibiting efficacy of around 86% at an optimum concentration of 20%.展开更多
Two water soluble acryl terpolymers containing polyvinyl alcohol, acrylamide/acrylic acid and vinyl sulphonic acid (VSA) were synthesized by free radical polymerization in aqueous medium. The morphological structure...Two water soluble acryl terpolymers containing polyvinyl alcohol, acrylamide/acrylic acid and vinyl sulphonic acid (VSA) were synthesized by free radical polymerization in aqueous medium. The morphological structure of the polymers were analysed using FTIR and 1H NMR, while the thermal properties were analysed by TGA and DSC. The inhibitive action of the terpolymers on corrosion of mid-steel in 1 mol. L- 1 HCI was studied using gravimetric, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) at 303 K. Both the polymers provided inhibition efficiency around 90% which clearly demonstrate that the grafted poly- mers have effective corrosion inhibiting ability on MS corrosion.展开更多
According to the electrochemical analysis, the corrosion inhibition efficiency of 5-methyl-lH-benzotriazole (m-BTA) is higher than that of benzotrizaole (BTA). The inhibition capability of the m-BTA passive film f...According to the electrochemical analysis, the corrosion inhibition efficiency of 5-methyl-lH-benzotriazole (m-BTA) is higher than that of benzotrizaole (BTA). The inhibition capability of the m-BTA passive film formed in hydroxyethylidenediphosphonic acid (HEDP) electrolyte containing both m-BTA and chloride ions is superior to that formed in m-BTA-alone electrolyte, even at a high anodic potential. The results of electrical impedance spectroscopy, nano-scratch experiments and energy dispersive analysis of X-ray (EDAX) indicate that the enhancement of m-BTA inhibition capability may be due to the increasing thickness of passive film. Furthermore, X-ray photoelectron spectrometry (XPS) analysis indicates that the increase in passive film thickness can be attributed to the incorporation of C1 into the m-BTA passive film and the formation of [Cu(I)CI(rn-BTA)], polymer film on Cu surface. Therefore, the introduction of C1- into m-BTA-containing HEDP electrolyte is effective to enhance the passivation capability of m-BTA passive film, thus extending the operating potential window.展开更多
The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic tests. It is found that when PESA is used alone, it had good corrosion inhibition. So, PESA should be inc...The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic tests. It is found that when PESA is used alone, it had good corrosion inhibition. So, PESA should be included in the category of corrosion inhibitors. It is not only a kind of green scale inhibitor, but also a green corrosion inhibitor. The synergistic effect between PESA and Zn2+ or sodium gluconate is poor. However, the synergistic effect among PESA, Zn2+ and sodium gluconate is excellent, and the corrosion inhibition efficiency for carbon steel is higher than 99%. Further study of corrosion inhibition mechanism reveals that corrosion inhibition of PESA is not affected by carboxyl group, but by the oxygen atom inserted. The existence of oxygen atom in PESA molecular structure makes it easy to form stable chelate with pentacyclic structure.展开更多
The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, te...The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency(IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl_3 solution.展开更多
A chitosan (CS)-based low-pH-sensitive intelligent corrosion inhibitor was prepared by loading a pH-sensitive hydrogel with benzotriazole (BTA); the pH-sensitive hydrogel was synthetized by crosslinking CS with gl...A chitosan (CS)-based low-pH-sensitive intelligent corrosion inhibitor was prepared by loading a pH-sensitive hydrogel with benzotriazole (BTA); the pH-sensitive hydrogel was synthetized by crosslinking CS with glutaraldehyde (GTA). Analysis by Fou- tier-transform inflared (FT-IR) spectroscopy showed that Schiff reactions occurred between amino and aldehyde groups. The swelling abil- ity of the hydrogel was investigated using a mass method, and it was observed to swell more in an acidic environment than in an alkaline en- vironment. The hydrogel's loading capacity of BTA was approximately 0.377 g·g ^-1, and its release speed was faster in an acidic environment than in an alkaline environment because of its swelling behavior. The corrosion inhibition ability of the intelligent inhibitor was tested by immersion and electrochemical methods. The results showed that after 4 h of immersion, the polarization resistance (Rp) value of copper with the intelligent inhibitor was approximately twice of that of copper with BTA, indicating that the intelligent inhibitor could effectively prevent copper from corroding.展开更多
Corrosion inhibitors for steel, such as sodium phosphate (Na3PO4), sodium nitrite (NaNO2), and benzotriazole (BTA), in simulated concrete pore solutions (saturated Ca(OH)2) were investigated. Corrosion behav...Corrosion inhibitors for steel, such as sodium phosphate (Na3PO4), sodium nitrite (NaNO2), and benzotriazole (BTA), in simulated concrete pore solutions (saturated Ca(OH)2) were investigated. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential (Ecorr), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP). A field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray analysis (EDXA) was used for observing the microstructures and morphology of corrosion products of steel. The results indicate that, compared with the commonly used nitrite-based inhibitors, Na3PO4 is not a good inhibitor, while BTA may be a potentially effective inhibitor to prevent steel from corrosion in simulated concrete pore solutions.展开更多
Magnesium alloys,the advanced lightweight structural materials,have been successfully applied in the manufacturing field.Unfortunately,their poor corrosion resistance restrains the potential wide applications.In this ...Magnesium alloys,the advanced lightweight structural materials,have been successfully applied in the manufacturing field.Unfortunately,their poor corrosion resistance restrains the potential wide applications.In this work,anti-corrosion coatings were fabricated via the insitu growth of the corrosion inhibitors intercalated magnesium-aluminum layered double hydroxide(Mg-Al LDH)on AZ31 magnesium alloy and then post-sealing it by a super-hydrophobic coating.SEM,XRD,EDS,FTIR,XPS and contact angle test were conducted to analyze physical/chemical features of these coatings.Potentiodynamic polarization curves and electrochemical impedance spectroscopy were recorded to assess the anti-corrosion performance of prepared coatings.Surprisingly,Mg-Al LDH with molybdate intercalation and lauric acid modification achieves the excellent corrosion inhibition performance(99.99%)due to the multicomponent synergistic effect such as the physical protection of Mg-Al LDH,the corrosion inhibition of molybdate and super-hydrophobic properties of lauric acid.This work presents a scientific perspective and novel design philosophy to fabricate the efficient anti-corrosion coating to protect magnesium alloys and then expand their potential applications in other field.展开更多
This investigation was aimed at evaluating the effectiveness of corrosion inhibitors in increasing the chloride threshold value for steel corrosion. Three types of corrosion inhibitors, calcium nitrite (Ca(NO2)2),...This investigation was aimed at evaluating the effectiveness of corrosion inhibitors in increasing the chloride threshold value for steel corrosion. Three types of corrosion inhibitors, calcium nitrite (Ca(NO2)2), zinc oxide (ZnO), and N,N'-dimethylaminoethanol (DMEA), which respectively represented the anodic inhibitor, cathodic inhibitor, and mixed inhibitor, were chosen. The experiment was carried out in a saturated calcium hydroxide (Ca(OH)2) solution to simulate the electrolytic environment of concrete. The inhibitors were initially mixed at different levels, and then chloride ions were gradually added into the solution in several steps. The open-circuit potential (Ecorr) and corrosion current density (lcorr) determined by electrochemical impedance spectra (EIS) were used to identify the initiation of active corrosion, thereby determining the chloride threshold value. It was found that although all the inhibitors were effective in decreasing the corrosion rate of steel reinforcement, they had a marginal effect on increasing the chloride threshold value.展开更多
Medipolymorphol, a new sterol isolated from the whole plant of Medicago polymorpha Roxb was used as corrosion inhibitor for 316 stainless steel in 5% HCI at room temperature. Electrochemical techniques have been found...Medipolymorphol, a new sterol isolated from the whole plant of Medicago polymorpha Roxb was used as corrosion inhibitor for 316 stainless steel in 5% HCI at room temperature. Electrochemical techniques have been found to be reliable in evaluating corrosion characteristics of the system. Several techniques have been used including Tafel, linear polarization, potentiodynamic polarization, and open circuit potential (OCP) studies. The additives simultaneously deaccelerated the anodic process, intensified the cathodic process and provided a stable passive state, giving good inhibition efficiencies to stainless steel electrodes. In addition, adsorption isotherm have been fitted for the inhibitor under investigation.展开更多
The inhibition behavior of polyaspartic acid(PASP)as an environment-friendly corrosion inhibitor for WE43 magnesium alloy was investigated in 3.5 wt.%NaCl solution by means for EIS measurement,potentiodynamic polariza...The inhibition behavior of polyaspartic acid(PASP)as an environment-friendly corrosion inhibitor for WE43 magnesium alloy was investigated in 3.5 wt.%NaCl solution by means for EIS measurement,potentiodynamic polarization curve,and scanning electron microscopy.The results show that PASP can inhibit the corrosion of WE43 magnesium alloy.The maximum inhibition efficiency is achieved when PASP concentration is 400 ppm in this study.展开更多
Adsorption and inhibition behavior of 2,5-bis(ethyldisulfanyl)-1,3,4-thiadiazole(DMTDA) and N-((6-methyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)-N-octyloctan-1-amine(EAMBA) as corrosion inhibitors contained in copper f...Adsorption and inhibition behavior of 2,5-bis(ethyldisulfanyl)-1,3,4-thiadiazole(DMTDA) and N-((6-methyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)-N-octyloctan-1-amine(EAMBA) as corrosion inhibitors contained in copper foil rolling oil have been investigated using gravimetric and electrochemical techniques. Meanwhile, scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) have been employed to observe the surface topography and analyze the components on copper foil. The results show that the rolling oil containing DMTDA and EAMBA can significantly decrease the dissolution rate and increase the inhibition efficiency of samples, especially in the case of best compounded rolling oil system. The SEM and EDS investigations also confirmed that the protection of the copper foil surface is achieved by strong adsorption of the molecules which can prevent copper from being corroded easily. Reactivity descriptors of the corrosion inhibitors have been calculated by the density functional theory(DFT) and the reactivity has been analyzed through the molecular orbital and Fukui indices. Active sites of inhibitor are mainly concentrated on the ring and the polar functional groups, and in the meanwhile, the distribution is helpful to form coordination and backbonding among molecules and then to form stable adsorption on the metal surface. And this work provides theoretical evidence for the selection of corrosion inhibitors contained in copper foil rolling oil.展开更多
By using acrylic acid copolymer, sodium citrate, hydrolyzed polymaleic anhydride (HPMA), corrosion inhibitor D and Zn2+ synergist as raw materials, a multi-component phosphate-free corrosion and scale inhibitor was de...By using acrylic acid copolymer, sodium citrate, hydrolyzed polymaleic anhydride (HPMA), corrosion inhibitor D and Zn2+ synergist as raw materials, a multi-component phosphate-free corrosion and scale inhibitor was developed. The performance of the composite phosphate-free corrosion and scale inhibitor was evaluated using the rotary hanging sheet corrosion test, the static scale inhibition test and the corrosion electrochemical test. And the surface morphology of the carbon steel was observed by scanning electronic microscope (SEM). Orthogonal experiment results indicated that the optimal mass ratios of amino acid: Zn2+ synergist: HPMA: corrosion inhibitor D: acrylic acid copolymer was 0.5:10:12:1:8. It was also observed that phosphate-free corrosion and scale inhibitor based on an anodic reaction through the electrochemical corrosion experiment, its annual corrosion rate and scale inhibition rate reached 0.0176 mm·a–1 and 98.3%, respectively, showing excellent corrosion and scale inhibition performance.展开更多
The mixture consisted of benzotriazole (BTA), chitosan (CTS), polyacrylic acid and zinc salt has been investigated as a corrosion and scale inhibitor of A3 carbon steel in cooling water. The scale and corrosion inhibi...The mixture consisted of benzotriazole (BTA), chitosan (CTS), polyacrylic acid and zinc salt has been investigated as a corrosion and scale inhibitor of A3 carbon steel in cooling water. The scale and corrosion inhibition efficiency was evaluated by static anti-scaling teat together with rotary coupon test. Compared with the phosphorus corrosion and scale inhibitor, the corrosion inhibition rate and scale inhibition rate of it increased respectively by 2.51% and 1.16%. As the corrosion and scale inhibitor is phosphate-free, it won’t cause eutrophication, considering the product performance and environmental influence, the phosphate-free corrosion and scale inhibitor is superior to the traditional one.展开更多
The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated...The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
基金This work was supported by the National Science and Technology Major Project of China(Grant No.2016ZX05028–004)the Fundamental Research Funds for the Central Universities(Grant No.FRF-IC-18–007).
文摘A novel and effective water-soluble aldehydes(β-HA)as corrosion inhibitor was synthesized for N80 steel corro-sion in 15%HCl solution,and the corrosion inhibition performance was evaluated by using weight loss,electro-chemical measurements,scanning electron microscope(SEM),quantum chemical calculation and molecular dynamics simulation(MDS).The results show that synthesizedβ-HA showed excellent corrosion performance compared with MHB and PE for carbon steel in 15%HCl solution compared with MHB and PE,and the inhibi-tion efficiency increased with increasing concentration of the inhibitor.The inhibition efficiency of β-HA at 8 mmol/L reached the maximum value 94.08%.The inhibitor acted as mixed-type inhibitor via blocking both the anodic and cathodic reaction.The adsorption of inhibitors on N80 steel surface obeyed Langmuir adsorption isotherm,and the process contained chemisorption and physisorption.TheΔG ads of β-HA was−28.81 kJ·mol^(-1)der the standard atmospheric pressure.Moreover,the theoretical calculation parameters revealed stronger combination and higher interaction energy for inhibitor β-HA comparing with MHB and PE,further demonstrat-ing the correlation between the theoretical and experimental results.
基金Fund by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No.2018YFD1101002-03)。
文摘Double-layered microcapsule corrosion inhibitors were developed by sodium monofluorophosphate as the core material,polymethyl methacrylate as the inner wall material,and polyvinyl alcohol as the outer wall material combining the solvent evaporation method and spray drying method.The protection by the outer capsule wall was used to prolong the service life of the corrosion inhibitor.The dispersion,encapsulation,thermal stability of microcapsules,and the degradation rate of capsule wall in concrete pore solution were analyzed by ultra-deep field microscopy,scanning electron microscopy,thermal analyzer,and sodium ion release rate analysis.The microcapsules were incorporated into mortar samples containing steel reinforcement,and the effects of double-layered microcapsule corrosion inhibitors on the performance of the cement matrix and the actual corrosion-inhibiting effect were analyzed.The experimental results show that the double-layered microcapsules have a moderate particle size and uniform distribution,and the capsules were completely wrapped.The microcapsules as a whole have good thermal stability below 230 ℃.The monolayer membrane structure microcapsules completely broke within 1 day in the simulated concrete pore solution,and the double-layer membrane structure prolonged the service life of the microcapsules to 80 days in the simulated concrete pore solution before the core material was completely released.The mortar samples containing steel reinforcement incorporated with the double-layered microcapsule corrosion inhibitors still maintained a higher corrosion potential than the monolayer microcapsule corrosion inhibitors control group at 60 days.The incorporation of double-layered microcapsules into the cement matrix has no significant adverse effect on the setting time and early strength.
基金supported by the National Natural Science Foundation of China(Nos.52031008,51874211,21673162,51325102,U22B2071)the International Science and Technology Cooperation Program of China(No.2015DFA90750)the China Postdoctoral Science Foundation(No.2020M682468)。
文摘The corrosion inhibition efficacy of titanate(CaTiO_(3))for carbon anodes in molten salts was investigated through various analytical techniques,including linear sweep voltammetry,X-ray diffraction,scanning electron microscopy,and energy dispersion spectroscopy.The results demonstrate that the addition of CaTiO_(3)corrosion inhibitor efficiently passivates the carbon anode and leads to the formation of a dense CaTiO_(3)layer during the electrolysis process in molten CaCl_(2)-CaO.Subsequently,the passivated carbon anode effectively undergoes the oxygen evolution reaction,with an optimal current density for passivation identified at 400 m A/cm^(2).Comprehensive investigations,including CaTiO_(3)solubility tests in molten CaCl_(2)-CaO and numerical modeling of the stability of complex ionic structures,provide compelling evidence supporting“complexation-precipitation”passivation mechanism.This mechanism involves the initial formation of a complex containing TiO_(2)·nCaO by CaTiO_(3)and CaO,which subsequently decomposes to yield CaTiO_(3),firmly coating the surface of the carbon anode.In practical applications,the integration of CaTiO_(3)corrosion inhibitor with the carbon anode leads to the successful preparation of the FeCoNiCrMn high-entropy alloy without carbon contamination in the molten CaCl_(2)-CaO.
文摘Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.
文摘Most reinforced concrete structures in seaside locations suffer from corrosion damage to the reinforcement, limiting their durability and necessitating costly repairs. To improve their performance and durability, we have investigated in this paper Aloe vera extracts as a green corrosion inhibitor for reinforcing steel in NaCl environments. Using electrochemical methods (zero-intensity chronopotentiometry, Tafel lines and electrochemical impedance spectroscopy), this experimental work investigated the effect of these Aloe vera (AV) extracts on corrosion inhibition of concrete reinforcing bar (HA, diameter 12mm) immersed in a 0.5M NaCl solution. The results show that Aloe vera extracts have an average corrosion-inhibiting efficacy of around 86% at an optimum concentration of 20%.
基金Tamil Nadu State Council for Science and Technology (Tnscst/rfrs/vr/2013-14) for catalysing and financially supporting the research work under the RFRS scheme
文摘Two water soluble acryl terpolymers containing polyvinyl alcohol, acrylamide/acrylic acid and vinyl sulphonic acid (VSA) were synthesized by free radical polymerization in aqueous medium. The morphological structure of the polymers were analysed using FTIR and 1H NMR, while the thermal properties were analysed by TGA and DSC. The inhibitive action of the terpolymers on corrosion of mid-steel in 1 mol. L- 1 HCI was studied using gravimetric, potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) at 303 K. Both the polymers provided inhibition efficiency around 90% which clearly demonstrate that the grafted poly- mers have effective corrosion inhibiting ability on MS corrosion.
基金Project(50975058) supported by the National Natural Science Foundation of China
文摘According to the electrochemical analysis, the corrosion inhibition efficiency of 5-methyl-lH-benzotriazole (m-BTA) is higher than that of benzotrizaole (BTA). The inhibition capability of the m-BTA passive film formed in hydroxyethylidenediphosphonic acid (HEDP) electrolyte containing both m-BTA and chloride ions is superior to that formed in m-BTA-alone electrolyte, even at a high anodic potential. The results of electrical impedance spectroscopy, nano-scratch experiments and energy dispersive analysis of X-ray (EDAX) indicate that the enhancement of m-BTA inhibition capability may be due to the increasing thickness of passive film. Furthermore, X-ray photoelectron spectrometry (XPS) analysis indicates that the increase in passive film thickness can be attributed to the incorporation of C1 into the m-BTA passive film and the formation of [Cu(I)CI(rn-BTA)], polymer film on Cu surface. Therefore, the introduction of C1- into m-BTA-containing HEDP electrolyte is effective to enhance the passivation capability of m-BTA passive film, thus extending the operating potential window.
文摘The corrosion inhibition of a green scale inhibitor, polyepoxysuccinic acid (PESA) was studied based on dynamic tests. It is found that when PESA is used alone, it had good corrosion inhibition. So, PESA should be included in the category of corrosion inhibitors. It is not only a kind of green scale inhibitor, but also a green corrosion inhibitor. The synergistic effect between PESA and Zn2+ or sodium gluconate is poor. However, the synergistic effect among PESA, Zn2+ and sodium gluconate is excellent, and the corrosion inhibition efficiency for carbon steel is higher than 99%. Further study of corrosion inhibition mechanism reveals that corrosion inhibition of PESA is not affected by carboxyl group, but by the oxygen atom inserted. The existence of oxygen atom in PESA molecular structure makes it easy to form stable chelate with pentacyclic structure.
基金financially supported by the National Natural Science Foundation of China (No. 81371183)
文摘The effects of chitosan inhibitor on the corrosion behavior of 2205 duplex stainless steel were studied by electrochemical measurements, immersion tests, and stereology microscopy. The influences of immersion time, temperature, and chitosan concentration on the corrosion inhibition performance of chitosan were investigated. The optimum parameters of water-soluble chitosan on the corrosion inhibition performance of 2205 duplex stainless steel were also determined. The water-soluble chitosan showed excellent corrosion inhibition performance on the 2205 duplex stainless steel. Polarization curves demonstrated that chitosan acted as a mixed-type inhibitor. When the stainless steel specimen was immersed in the 0.2 g/L chitosan solution for 4 h, a dense and uniform adsorption film covered the sample surface and the inhibition efficiency(IE) reached its maximum value. Moreover, temperature was found to strongly influence the corrosion inhibition of chitosan; the inhibition efficiency gradually decreased with increasing temperature. The 2205 duplex stainless steel specimen immersed in 0.4 g/L water-soluble chitosan at 30°C displayed the best corrosion inhibition among the investigated specimens. Moreover, chitosan decreased the corrosion rate of the 2205 duplex stainless steel in an FeCl_3 solution.
基金supported by the National Natural Science Foundation of China (No. 51222106)the Fundamental Research Funds for the Central Universities of China (No. FRF-TP-14-011C1)
文摘A chitosan (CS)-based low-pH-sensitive intelligent corrosion inhibitor was prepared by loading a pH-sensitive hydrogel with benzotriazole (BTA); the pH-sensitive hydrogel was synthetized by crosslinking CS with glutaraldehyde (GTA). Analysis by Fou- tier-transform inflared (FT-IR) spectroscopy showed that Schiff reactions occurred between amino and aldehyde groups. The swelling abil- ity of the hydrogel was investigated using a mass method, and it was observed to swell more in an acidic environment than in an alkaline en- vironment. The hydrogel's loading capacity of BTA was approximately 0.377 g·g ^-1, and its release speed was faster in an acidic environment than in an alkaline environment because of its swelling behavior. The corrosion inhibition ability of the intelligent inhibitor was tested by immersion and electrochemical methods. The results showed that after 4 h of immersion, the polarization resistance (Rp) value of copper with the intelligent inhibitor was approximately twice of that of copper with BTA, indicating that the intelligent inhibitor could effectively prevent copper from corroding.
基金financially supported by the National Basic Research Priorities Program of China (No.2009CB623203)the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1017)
文摘Corrosion inhibitors for steel, such as sodium phosphate (Na3PO4), sodium nitrite (NaNO2), and benzotriazole (BTA), in simulated concrete pore solutions (saturated Ca(OH)2) were investigated. Corrosion behaviors of steel in different solutions were studied by means of corrosion potential (Ecorr), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization (PDP). A field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray analysis (EDXA) was used for observing the microstructures and morphology of corrosion products of steel. The results indicate that, compared with the commonly used nitrite-based inhibitors, Na3PO4 is not a good inhibitor, while BTA may be a potentially effective inhibitor to prevent steel from corrosion in simulated concrete pore solutions.
基金This work is financially supported by the Graduate Research and Innovation of Chongqing,China(Grant No.CYB18002)the National Natural Science Foundation of China(Grant No.21576034)+2 种基金the State Education Ministry and Fundamental Research Funds for the Central Universities(2019CDQYCL042,106112017CDJXSYY0001,2018CDYJSY0055,106112017CDJQJ138802,106112017CDJSK04XK11,2018CDQYCL0027)the Joint Funds of the National Natural Science Foundation of China-Guangdong(Grant No.U1801254)Fundamental Re-search Funds for the Central Universities(NO.2018CDJDCD0001).
文摘Magnesium alloys,the advanced lightweight structural materials,have been successfully applied in the manufacturing field.Unfortunately,their poor corrosion resistance restrains the potential wide applications.In this work,anti-corrosion coatings were fabricated via the insitu growth of the corrosion inhibitors intercalated magnesium-aluminum layered double hydroxide(Mg-Al LDH)on AZ31 magnesium alloy and then post-sealing it by a super-hydrophobic coating.SEM,XRD,EDS,FTIR,XPS and contact angle test were conducted to analyze physical/chemical features of these coatings.Potentiodynamic polarization curves and electrochemical impedance spectroscopy were recorded to assess the anti-corrosion performance of prepared coatings.Surprisingly,Mg-Al LDH with molybdate intercalation and lauric acid modification achieves the excellent corrosion inhibition performance(99.99%)due to the multicomponent synergistic effect such as the physical protection of Mg-Al LDH,the corrosion inhibition of molybdate and super-hydrophobic properties of lauric acid.This work presents a scientific perspective and novel design philosophy to fabricate the efficient anti-corrosion coating to protect magnesium alloys and then expand their potential applications in other field.
基金supported by the National Natural Science Foundation of China (Grants No. 51278168 and51278167)the China Postdoctoral Science Foundation Funded Project (Grant No. 20100481082)+3 种基金the China Postdoctoral Science Foundation Special Funded Project (Grant No. 201104544) the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1002019B)the Qing Lan Projectthe Opening Project of Shenzhen Durability Center for Civil Engineering, Shenzhen University (Grant No.SZDCCE11-03)
文摘This investigation was aimed at evaluating the effectiveness of corrosion inhibitors in increasing the chloride threshold value for steel corrosion. Three types of corrosion inhibitors, calcium nitrite (Ca(NO2)2), zinc oxide (ZnO), and N,N'-dimethylaminoethanol (DMEA), which respectively represented the anodic inhibitor, cathodic inhibitor, and mixed inhibitor, were chosen. The experiment was carried out in a saturated calcium hydroxide (Ca(OH)2) solution to simulate the electrolytic environment of concrete. The inhibitors were initially mixed at different levels, and then chloride ions were gradually added into the solution in several steps. The open-circuit potential (Ecorr) and corrosion current density (lcorr) determined by electrochemical impedance spectra (EIS) were used to identify the initiation of active corrosion, thereby determining the chloride threshold value. It was found that although all the inhibitors were effective in decreasing the corrosion rate of steel reinforcement, they had a marginal effect on increasing the chloride threshold value.
文摘Medipolymorphol, a new sterol isolated from the whole plant of Medicago polymorpha Roxb was used as corrosion inhibitor for 316 stainless steel in 5% HCI at room temperature. Electrochemical techniques have been found to be reliable in evaluating corrosion characteristics of the system. Several techniques have been used including Tafel, linear polarization, potentiodynamic polarization, and open circuit potential (OCP) studies. The additives simultaneously deaccelerated the anodic process, intensified the cathodic process and provided a stable passive state, giving good inhibition efficiencies to stainless steel electrodes. In addition, adsorption isotherm have been fitted for the inhibitor under investigation.
基金The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China(No.41276074)National Basic Research Program of China(No.2014CB643304).
文摘The inhibition behavior of polyaspartic acid(PASP)as an environment-friendly corrosion inhibitor for WE43 magnesium alloy was investigated in 3.5 wt.%NaCl solution by means for EIS measurement,potentiodynamic polarization curve,and scanning electron microscopy.The results show that PASP can inhibit the corrosion of WE43 magnesium alloy.The maximum inhibition efficiency is achieved when PASP concentration is 400 ppm in this study.
基金the financial assistance provided by the National Natural Science Foundation of China (No. 51474025)the Cooperation Program between USTB and SINOPEC (No.112116)
文摘Adsorption and inhibition behavior of 2,5-bis(ethyldisulfanyl)-1,3,4-thiadiazole(DMTDA) and N-((6-methyl-1H-benzo[d][1,2,3]triazol-1-yl)methyl)-N-octyloctan-1-amine(EAMBA) as corrosion inhibitors contained in copper foil rolling oil have been investigated using gravimetric and electrochemical techniques. Meanwhile, scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) have been employed to observe the surface topography and analyze the components on copper foil. The results show that the rolling oil containing DMTDA and EAMBA can significantly decrease the dissolution rate and increase the inhibition efficiency of samples, especially in the case of best compounded rolling oil system. The SEM and EDS investigations also confirmed that the protection of the copper foil surface is achieved by strong adsorption of the molecules which can prevent copper from being corroded easily. Reactivity descriptors of the corrosion inhibitors have been calculated by the density functional theory(DFT) and the reactivity has been analyzed through the molecular orbital and Fukui indices. Active sites of inhibitor are mainly concentrated on the ring and the polar functional groups, and in the meanwhile, the distribution is helpful to form coordination and backbonding among molecules and then to form stable adsorption on the metal surface. And this work provides theoretical evidence for the selection of corrosion inhibitors contained in copper foil rolling oil.
文摘By using acrylic acid copolymer, sodium citrate, hydrolyzed polymaleic anhydride (HPMA), corrosion inhibitor D and Zn2+ synergist as raw materials, a multi-component phosphate-free corrosion and scale inhibitor was developed. The performance of the composite phosphate-free corrosion and scale inhibitor was evaluated using the rotary hanging sheet corrosion test, the static scale inhibition test and the corrosion electrochemical test. And the surface morphology of the carbon steel was observed by scanning electronic microscope (SEM). Orthogonal experiment results indicated that the optimal mass ratios of amino acid: Zn2+ synergist: HPMA: corrosion inhibitor D: acrylic acid copolymer was 0.5:10:12:1:8. It was also observed that phosphate-free corrosion and scale inhibitor based on an anodic reaction through the electrochemical corrosion experiment, its annual corrosion rate and scale inhibition rate reached 0.0176 mm·a–1 and 98.3%, respectively, showing excellent corrosion and scale inhibition performance.
文摘The mixture consisted of benzotriazole (BTA), chitosan (CTS), polyacrylic acid and zinc salt has been investigated as a corrosion and scale inhibitor of A3 carbon steel in cooling water. The scale and corrosion inhibition efficiency was evaluated by static anti-scaling teat together with rotary coupon test. Compared with the phosphorus corrosion and scale inhibitor, the corrosion inhibition rate and scale inhibition rate of it increased respectively by 2.51% and 1.16%. As the corrosion and scale inhibitor is phosphate-free, it won’t cause eutrophication, considering the product performance and environmental influence, the phosphate-free corrosion and scale inhibitor is superior to the traditional one.
基金Project(UKM-GUP-BTT-07-25-170) supported by Universiti Kebangsaan Malaysia
文摘The inhibition ability of 4-amino-5-phenyl-4H-1, 2, 4-trizole-3-thiol (APTT), ethylenediaminetetra-acetic acid (EDTA) and thiourea (TU) for mild steel corrosion in 1.0 moFL HC1 solution at 30 ℃ was investigated. Tafel polarization and electrochemical impedance spectroscopy (EIS) were used to investigate the influence of these organic compounds as corrosion inhibitors of mild steel in 1.0 mol/L HC1 solution at 30 ℃. The inhibition mechanism was discussed in terms of Langrnuir isotherm model. Results obtained from Tafel polarization and impedance measurements are in a good agreement. The inhibition efficiency increases with the increase of the inhibitor concentration. The adsorption of the inhibitors on the mild steel surface follows Langmuir adsorption isotherm and the free energy of adsorption AGads indicates that the adsorption of APTT, EDTA, and TU molecules is a spontaneous process and a typical chemisorption.