期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Large-scale gas accumulation mechanisms and reservoir-forming geological effects in sandstones of Central and Western China 被引量:1
1
作者 LI Wei WANG Xueke +3 位作者 ZHANG Benjian CHEN Zhuxin PEI Senqi YU Zhichao 《Petroleum Exploration and Development》 2020年第4期714-725,共12页
Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of nat... Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation. 展开更多
关键词 Central and Western China basins large-scale natural gas accumulation mechanism structural pumping effect mudstone water absorption effect water-soluble gas degasification effect fluid sequestration effect natural gas reservoir formation
下载PDF
Study on preparation and gas sensing property of water-soluble polyaniline/SmBaCuMO_(5+δ)(M=Fe, Co, Ni) for NH_3 被引量:2
2
作者 郝红霞 刘瑞泉 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第1期23-28,共6页
Water-soluble polyaniline (PANI), prepared by chemical-oxide and SmBaCuMO5+δ(M=Fe, Co, Ni)(SBCM) powders, pre-pared by sol-gel method were analyzed through Fourier transform infrared spectroscopy (FT-IR) spe... Water-soluble polyaniline (PANI), prepared by chemical-oxide and SmBaCuMO5+δ(M=Fe, Co, Ni)(SBCM) powders, pre-pared by sol-gel method were analyzed through Fourier transform infrared spectroscopy (FT-IR) spectra, X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) respectively, so as to investigate the gas sensi-tivities of PANI/SmBaCuFeO5+δ(SBCF) and its sensitivity to NH3 under room temperature. The results showed that all of SBCM powders were of double-perovskite structure and PANI was successfully obtained. Under the same condition, the gas sensor based on PANI/SmBaCuFeO5+δ(SBCF) material exhibited higher resistance sensitivity, better selectivity and shorter response-recovery time than others. The resistance sensitivities to NH3 increased with the increasing of atom radius of M in PANI/SBCM. 展开更多
关键词 gas sensor water-soluble polyaniline/SrnBaCuMOs+δ (M=Fe Co Ni) room temperature sensitivity to NH3 rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部