A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- ...A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- 4, PO 3- 4), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 μg/m 3 to 500 μg/m 3(r = 0.999—0.9999). The relative standard deviation(RSD) were 0.43%—2.00% and the detection limits were from 2.7 ng/m 3 to 88 ng/m 3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM 2.5 of Beijing.展开更多
Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-lin...Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO4^2-, NO3^-, NO2^-, Cl^- and F- is below 0.3μg m^-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.展开更多
Thirty-six daily time interval PM2.5 samples were collected in different seasonal dates in urban Shanghai, and the concentrations of four anions (Cl- , NO3-, SO4^2-, C2O4^2-) and five cations (NH+, Na+, K+, Ca2...Thirty-six daily time interval PM2.5 samples were collected in different seasonal dates in urban Shanghai, and the concentrations of four anions (Cl- , NO3-, SO4^2-, C2O4^2-) and five cations (NH+, Na+, K+, Ca2+, Mg2+) were analyzed with ion chromatography. Sulfate, nitrate and ammonium were found to be the dominant species, accounting for about 80% of the total ions. The daily nitrate to sulfate mass ratio ranged from 0.31 to 0.82, indicating that coal combustion was still the main pollution source in Shanghai. The equivalent ratio of ammonium to stun of nitrate and sulfate showed fixed diurnal variation pattern in all the sampling days with higher values in the nighttime, suggesting that fine particles in the night were more neutralized. The oxalate to sulfate ratio was lower in the winter sampling days than that in hotter summer and autumn sampling days. Oxalate was significantly correlated with sulfate in winter sampling days, but not in the summer and autumn, suggesting that the formation mechanism of oxalate and sulfate was similar in winter, however different in hot days.展开更多
Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,...Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,sources,and influential factors of atmospheric particulate matter and its water-soluble ion concentrations is not sufficient.Thus,the major water-soluble ion concentrations,sources,and influential factors of atmospheric particles PM_(2.5) and PM_(10)(particulate matter with an aerodynamic equivalent diameter≤2.5 and 10.0μm,respectively,in ambient air)were collected from Cave 16 and its ambient exterior environment in the Dunhuang Mogao Grottoes,China,between April 2015 and March 2016.Results showed that the concentrations of PM_(2.5) and PM_(10) inside and outside the cave were the highest in March 2016 and the lowest in December 2015.The higher particle concentration from March to May was related to the frequent occurrence of sand and dust events,and the lower particle concentration from June to September was associated with good diffusion conditions,increased precipitation,and an established cave shelterbelt.The concentration of particulate matter inside the cave was affected by the concentration of particles in the air outside the cave.Ca2+,NH+4,Na+,Cl-,and SO2-4were the main components of the total ions of PM_(2.5) and PM_(10) both inside and outside the cave.The total ions inside the cave were frequently affected by the disturbance of tourists'activities during the peak tourist season from May to August.Under the influence of dust,the total concentrations of Cl-,SO2-4,Na+,NH+4,and Ca2+in particles of different sizes inside and outside the cave increased,and the concentrations of Cl-,SO2-4,Na+,and Ca2+decreased during precipitation period.Backward air mass trajectory analysis suggested that the pollutants were mainly from Xinjiang,China.The pollutant sources of air particulates are straw burning,secondary pollution sources,soil dust,dry spring rivers,and tourist activities.展开更多
To further understand the variations of water-soluble ions in PM2.5 in Beijing,the authors observed their concentrations continuously and in high temporal resolution by the system for rapid collection of fine particle...To further understand the variations of water-soluble ions in PM2.5 in Beijing,the authors observed their concentrations continuously and in high temporal resolution by the system for rapid collection of fine particles and ion chromatography(RCFP-IC) during 12–18 July 2010.These results combined with those of earlier backward trajectory research are used analyzed to determine the causes of concentration changes in water-soluble ions under the influences of two kinds of air masses in summer.The results indicate that concentrations of NO3-,SO42-,and NH4+ were influenced strongly by the continental air mass than by the marine air mass.Cl- and Na+ were not changed significantly.Because the sources of K+,Mg2+,and Ca2+ are mainly concentrated on land,their concentration levels were slightly higher under the control of continental air mass than that of the marine air mass.Variations of NO2- during the observation differed from those of other ions;its concentration was significantly higher under the influence of marine air mass.Moreover,the authors obtain the diurnal variations of eight water-soluble inorganic ions including NH4+,K+,Mg2+,Ca2+,Cl-,NO2-,NO3-,and SO42-.Diurnal variations of NH4+,NO3-,and Cl- showed single peak,which appeared before noon,while SO42- showed two peaks that appeared during rush hours.Those of Mg2+,Ca2+,and K+ showed single peak that appeared in the afternoon.That of NO2- showed with a peak appearing at sunrise and a valley appearing at sunset.展开更多
To investigate chemical profiles and formation mechanisms of aerosol particles in winter haze events,comprehensive measurements including hourly concentrations of PM2.5 and water-soluble inorganic ions and related gas...To investigate chemical profiles and formation mechanisms of aerosol particles in winter haze events,comprehensive measurements including hourly concentrations of PM2.5 and water-soluble inorganic ions and related gasphase precursors were conducted via an online monitoring system from January to March of 2016 in Shenzhen,a coastal mega-city in south China.In this study,high concentrations of PM2.5,NO2 and lower levels of O3 were observed during haze periods in comparison with clear days(Visibility>15 km).The major secondary ionic species were NH+4、NO-3 and SO2-4,which varied significantly on haze and clear days.The ratio of NO-3/SO2-4 in haze days was greater than that on clear days and tended to be larger when air pollution became more serious.At the same time,compared with previous studies,it has been found that the ratio has been increasing gradually in Shenzhen,indicating that the motor vehicle exhaust emissions have a more and more important impact on air quality in Shenzhen.Sulfur oxidation rate(SOR)and nitrogen oxidation rate(NOR)was higher during the haze period than that in clean days,indicating efficient gas to particle conversion.Further analysis shows that high concentrations of sulfate might be explained by aqueous oxidation,but gas-phase reactions might dominate nitrate formation.This study also highlights that wintertime nitrate formation can be an important contributor to aerosol particles,especially during haze periods.展开更多
Based on Total Suspended Particulates (TSP) observations of Tazhong, Tikanli, Kashi and Minfeng in 2009, combined wa- ter-soluble inorganic ion analyses, this paper studied the spatial and temporal distribution of T...Based on Total Suspended Particulates (TSP) observations of Tazhong, Tikanli, Kashi and Minfeng in 2009, combined wa- ter-soluble inorganic ion analyses, this paper studied the spatial and temporal distribution of TSP in the Tarim Basin and analyzed concentration characteristics. The results are as follows: (1) monthly average TSP concentrations shows a similar trend in Tazhong, Tikanli, Kashi and Minfeng with peak values in April-May and low values in November-December. As for the quarter average mass concentration trends, spring has the highest value, followed by summer and autumn, and winter is the lowest; (2) total annual concentration trend of water-soluble inorganic ions in TSP is as follows: Tazhong 〉 Tikanli 〉 Minfeng 〉 Kashi. SO4^2- concentra- tions are 58%, 50%, 54% and 51% of total ion concentration; Ca^2+ concentrations are 13%, 16%, 16% and 11%; Na^+ concentra- tions are 12%, 13%, 10% and 12% and Cl^- concentrations are 12%, 16%, 11% and 22%, respectively. Therefore, sulfate, calcium, sodium and chloride ions are the main inorganic components of TSP in the Tarim Basin; (3) the correlation coefficients of anions and cations in Tikanli, Minfeng, Kashi and Tazhong are 0.99, 0.99, 0.25 and 0.91, respectively; the average anion concentrations are 2.57, 2.12, 2.15 and 3.02 times the average cation concentrations, indicating that ions were unbalanced; (4) SO4^2-/NO3^- ratio is much larger than the ratio of coal-fired emissions SO4^2-/NO3^-, thus the impact of fixed emission sources in the four regions on the atmosphere is far greater than that of mobile emission sources.展开更多
To understand the physical and chemical characteristics, particle size distribution and sources of size-separated aerosols in Lhasa, which is located on the Tibetan Plateau(TP), six sizes of aerosol samples were colle...To understand the physical and chemical characteristics, particle size distribution and sources of size-separated aerosols in Lhasa, which is located on the Tibetan Plateau(TP), six sizes of aerosol samples were collected in Lhasa in 2014. Ca^(2+), NH_4^+, NO_3^-,SO_4^(2-)and Cl-were the dominant ions. The ratio of cation equivalents(CE) to anion equivalents(AE) for each particle size segment indicated that the atmospheric aerosols in Lhasa were alkaline. SO_4^(2-)and NO_3^-could be neutralized by Ca^(2+), but could not be neutralized by NH_4^+, according to the [NH_4^+]/[NO_3^-+ SO_4^(2-)] and [Ca^(2+)]/[NO_3^-+ SO_4^(2-)] ratios. Mobile sources were dominant in PM_(0.95-1.5),PM_(1.5-3) and PM_(3-7.2), while stationary sources were dominant in the other three size fractions according to the [NO_3^-]/[SO_4^(2-)] ratios. The particle size distribution of all watersoluble ions during monsoon and non-monsoon periods was characterized by a bimodal distribution due to the different sources and formation mechanisms, and it was revealed that different ions had different sources in different seasons and different particle size segments by combining particle size distribution with correlation analysis. Source analysis of aerosols in Lhasa was performed using the Principal component analysis(PCA) for the first time, which revealed that combustion sources, motor vehicle exhaust, photochemical reaction sources and various types of dust were the main sources of Lhasa aerosols.Furthermore, Lhasa's air quality was also affected by long-distance transmission, expressed as pollutants from South Asia and West Asia, which were transmitted to Lhasa according to backward trajectory analysis.展开更多
PM2.5 and PM10 samples were collected at four major cities in the Pearl River Delta (PRD), South China, during winter and summer in 2002. Six water-soluble ions, Na^+, NH4+, K^+, Cl^-, NO3^- and SO4^2- were measu...PM2.5 and PM10 samples were collected at four major cities in the Pearl River Delta (PRD), South China, during winter and summer in 2002. Six water-soluble ions, Na^+, NH4+, K^+, Cl^-, NO3^- and SO4^2- were measured using ion chromatography. On average, ionic species accounted for 53.3% and 40.5% for PM2.5 and PM10, respectively in winter and 39.4% and 35.2%, respectively in summer. Secondary ions such as sulfate, nitrate and ammonium accounted for the major part of the total ionic species. Sulfate was the most abundant species followed by nitrate. Overall, a regional pollution tendency was shown that there were higher concentrations of sulfate, nitrate and ammonium in Guangzhou City than those in the other PRD cities. Significant seasonal variations were also observed with higher levels of species in winter but lower in summer. The Asian monsoon system was favorable for removal and diffusion of air pollutants in PRD in summer while highly loading of local industrial emissions tended to deteriorate the air quality as well. NO3^-/SO4^2- ratio indicated that mobile sources have considerably contribution to the urban aerosol, and stationary sources should not be neglected. Besides the primary emissions, complex atmospheric reactions under favorable weather conditions should be paid more attention for the control of primary emission in the PRD region.展开更多
Recently, air quality has significantly improved in developed country, but that issue is of concern in emerging megacity in developing country.In this study, aerosols and their precursor gas were collected by NILU fil...Recently, air quality has significantly improved in developed country, but that issue is of concern in emerging megacity in developing country.In this study, aerosols and their precursor gas were collected by NILU filter pack at two distinct urban sites during the winter and summer in Osaka, Japan and dry and rainy seasons in Ho Chi Minh City(HCMC),Vietnam.The aims are to investigate the contribution of water-soluble inorganic ions(WSIIs) to PM2.5, thermodynamic characterization and possible formation pathway of secondary inorganic aerosol(SIA).The PM2.5 concentration in Osaka(15.8 μg/m^3) is lower than that in HCMC(23.0 μg/m^3), but the concentration of WSIIs in Osaka(9.0 μg/m^3) is two times higher than that in HCMC(4.1 μg/m^3).Moreover, SIA including NH4^+, NO3^-and SO4^2-are major components in WSIIs accounting for 90% and 76%(in molar) in Osaka and HCMC,respectively.Thermodynamic models were used to understand the thermodynamic characterization of urban aerosols.Overall, statistical analysis results indicate that very good agreement(R2> 0.8) was found for all species, except for nitrate aerosol in HCMC.We found that when the crustal species present at high amount, those compositions should be included in model calculation(i.e.in the HCMC situation).Finally, we analyzed the characteristics of NH4^+– NO3^-– SO4^2-system.A possible pathway to produce fine nitrate aerosol in Osaka is via the homogeneous reaction between NH3 and HNO3, while nonvolatile nitrate aerosols can be formed by the heterogeneous reactions in HCMC.展开更多
To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed ...To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed during one event of November 4-9, 2010. Results show that the size distribution of aerosol concentration is bimodal on pollution days and normal days, with peak values at 60- 70 and 200-300 nm, respectively. Aerosol concentration is 104 cm-3.nm-1 on pollution days. The peak value of spectrum distribution of aerosol concentration on pollution days is 1.5-3.3 times higher than that on a normal day. Crop residual burning has a great impact on the concentration of fine particles. Diurnal variation of aerosol concentration is trimodal on pollution days and normal days, with peak values at 03:00, 09:00 and 19:00 local standard time. The first peak is impacted by meteorological elements, while the second and third peaks are due to human activities, such as rush hour traffic. Crop residual burning has the greatest impact on SO2 concentration, followed by NO2, 03 is hardly affected. The impact of crop residual burning on fine particles (〈 2.1 μm) is larger than on coarse particles (〉 2.1 μm), thus ion concentration in fine particles is higher than that in coarse particles. Crop residual burning leads to similar increase in all ion components, thus it has a small impact on the water-soluble ions order. Crop residual burning has a strong impact on the size distribution of K^+, Cl^-, Na^+, and F- and has a weak impact on the size distributions of NH4^+, Ca^2+, NO3^- and SO4^2-.展开更多
To better understand the characteristics and transformation mechanisms of secondary inorganic aerosols,hourly mass concentrations of water-soluble inorganic ions(WSIIs)in PM_(2.5)and their gaseous precursors were meas...To better understand the characteristics and transformation mechanisms of secondary inorganic aerosols,hourly mass concentrations of water-soluble inorganic ions(WSIIs)in PM_(2.5)and their gaseous precursors were measured online from 2016 to 2018 at an urban site in Beijing.Seasonal and diurnal variations in water-soluble ions and gaseous precursors were discussed and their gas-particle conversion and partitioning were also examined,some related parameters were characterized.The(TNH_(3))Rich was also defined to describe the variations of the excess NH_(3)in different seasons.In addition,a sensitivity test was carried out by using ISORROPIA II to outline the driving factors of gas-particle partitioning.In Beijing,the relative contribution of nitrate to PM_(2.5)has increased markedly in recent years,especially under polluted conditions.In the four seasons,only a small portion of NO_(2)in the atmosphere was converted into total nitrate(TNO_(3)),and more than 80%of TNO_(3)occurred in the form of nitrate due to the abundant ammonia.The concentration of total ammonia(TNH_(3))was much higher than that required to neutralize acid gases,and most of the TNH_(3)occurred as gaseous NH_(3).The nitrous acid(HONO)concentration was highly correlated with NH_(3)concentration and had increased significantly in Beijing compared with previous studies.The total chloride(TCl)was the highest in winter,andε(Cl^(-))was more sensitive to variations in the ambient temperature(T)and relative humidity(RH)thanε(NO_(3)^(-)).展开更多
The characteristics of water-soluble ions in airborne particulate matter in Beijing were investigated using ion chromatography. The results showed that the total concentrations of ions were 83.7 ± 48.9 μg/m3 in ...The characteristics of water-soluble ions in airborne particulate matter in Beijing were investigated using ion chromatography. The results showed that the total concentrations of ions were 83.7 ± 48.9 μg/m3 in spring, 54.0 ± 17.0 μg/m3 in summer, 54.1 ± 42.9 μg/m3 in autumn, and 88.8 ± 47.7 μg/m3 in winter, respectively. Furthermore, out of all the ions, NO3-,SO42-and NH4+accounted for 81.2% in spring, 78.5% in summer, 74.6% in autumn, and 76.3%in winter. Mg2+and Ca2+were mainly associated with coarse particles, with a peak that ranged from 5.8 to 9.0 μm. Na+, NH4+and Cl-had a multi-mode distribution with peaks that ranged from 0.43 to 1.1 μm and 4.7 to 9.0 μm. K+, NO3-, and SO42-were mainly associated with fine particles, with a peak that ranged from 0.65 to 2.1 μm. The concentrations of Na+, K+,Mg2+, Ca2+, NH4+, Cl-, NO3-and SO42-were 2.69, 2.32, 1.01, 4.84, 16.9, 11.8, 42.0, and 44.1 μg/m3 in particulate matter(PM) on foggy days, respectively, which were 1.4 to 7.3 times higher than those on clear days. The concentrations of these ions were 2.40, 1.66, 0.92, 4.95, 17.5,7.00, 32.6, and 34.7 μg/m3 in PM on hazy days, respectively, which were 1.2–5.7 times higher than those on clear days.展开更多
The characteristics of water-soluble ions in size-resolved particulate matter were investigated usingion chromatography at Shangdianzi, a regional background station of Beijing, Tianjin, and Hebei. Seasonal total conc...The characteristics of water-soluble ions in size-resolved particulate matter were investigated usingion chromatography at Shangdianzi, a regional background station of Beijing, Tianjin, and Hebei. Seasonal total concentrations of ions (Na+, Mg2+, IC, Ca2+, NH+4, Cl-, SO2-4 and NO-3) were 75.5 ± 52.9 μg/m3 in spring, 26.5 ± 12.3 Bg/m3 in summer, 22.7 ± 20.4 μg/m3 in autumn, and 31.1 ± 23.9 μg/m3 in winter, respectively. The secondary ions (NO3, SO2-4 and NH+4), mainly associated with fine particles, accounted for 84.2% in spring, 82.1% in summer, 81.5% in autumn and 76.3% in winter of all ions. Strong correlations were found between NH+4 and SO2-4 (r = 0.95, p 〈 0.01) as well as NH+4 and NO-3 (r = 0.90, p 〈 0.01) in fine particles; while in coarse particles, correlations between Mg2+ and NO-3 (r = 0.80, p 〈 0.01), and Ca2+ and NO2+ (r = 0.85, p 〈 0.01) were found. The concentrations of Na+, IC, Mg2+, Ca2+, NH+4, Cl-, NO3, and SC2-4 were 2.02, 0.81, 0.36, 1.65, 9.58, 4.01, 18.9, and 18.4 μg/m3 in particulate matter from southeast-derived air masses, which were typically 1.58-3.37 times higher than in northwest trajectories. Thus, concentrations of water-soluble ions at this background station were heavily influenced by regional transport of serious pollution derived from biomass burning, coal combustion, industrial and vehicle exhaust emissions from Beijing, Tianjin, and Hebei.展开更多
Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4...Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl-, NO3-, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p 〈 0.01, R = 0.95 for wheat straw; p 〈 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl- and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl- and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl- with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl-/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.展开更多
Atmospheric particulate samples were collected from four densely populated places in a university,and then the concentration levels of indoor particulates were analyzed.Water-soluble cations and anions in the indoor p...Atmospheric particulate samples were collected from four densely populated places in a university,and then the concentration levels of indoor particulates were analyzed.Water-soluble cations and anions in the indoor particles were analyzed through ultrasonic extraction and ion chromatography(IC),and total organic carbon(TOC)content was analyzed by using a TOC analyzer.Organic compounds in the indoor particles were analyzed through ultrasonic extraction and GC-MS.The results showed that among the water-soluble ions,the mass concentration of SO2-4in indoor particles was the highest,so it was the main contributor of water-soluble anions,indicating that combustion of fossil fuels and industrial discharge were main sources of indoor particles at the four sampling points.Water-soluble organic carbon was the main component of water-soluble carbon in indoor particles.Among the four sampling points,the mass concentrations of the 18 organic compounds except for glycerol and phthalic acid were the highest in the cafeteria,so organic components in indoor atmospheric particles were mainly from food sources.展开更多
Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental q...Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental quality,and the changes and related relationships of water-soluble ions and particulate matter elements were analyzed.The results showed that winter transit air masses had a significant impact on the air quality in Hengyang.In the quantitative comparison of the primary pollutant contribution during the transit period of air masses,local sources and transit sources each accounted for half,and the impact of transit source on ambient air quality was much greater than that of seasonal base increase.Fine particulate matter was closely related to secondary ions,and particulate matter was closely related to primary ions.The transit of air masses promoted the improvement of secondary ion conversion rate,and the unit increment of fine particulate matter was greater than that of particulate matter.During the transit period,the mass concentrations of most water-soluble ions and most particulate matter elements maintained synchronous growth,with a superimposed effect.The composition ratio of organic carbon and nitrate ions increased,while the composition ratio of ammonia and sulfate ions decreased.Both disposable ions and secondary conversions in the composition of PM_(2.5)had increases and decreases.The high conversion rate of nitrate and the high composition ratio of ammonia radical in Hengyang indicated that transportation source factors had a significant impact on the local environmental quality of Hengyang.展开更多
The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between...The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between normal and haze days.The highest contributors to PM2.5 were organic carbon(OC),nitrate,and sulfate in haze days and were OC,sulfate,and elemental carbon(EC) in normal days.The concentrations of secondary species such as,NO3^-,SO4^2-,and NH4^+ in haze days were 6.5,3.9,and 5.3 times higher than those in normal days,respectively,while primary species(EC,Ca^2+,K^+) show similar increase from normal to haze days by a factor about 2.2-2.4.OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC(secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days.The significantly increase in the secondary species(SOC,NO3^-,SO4^2-,and NH4^+),especially in NO3^-,caused the worst air quality in this region.Simultaneously,the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions.During the sampling periods,air pollution and visibility had a good relationship with the air mass transport distance;the shorter air masses transport distance,the worse air quality and visibility in Guangzhou,indicating the strong domination of local sources contributing to haze formation.High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.展开更多
文摘A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F -, Cl -, NO - 2, NO - 3, SO 2- 3, SO 2- 4, PO 3- 4), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 μg/m 3 to 500 μg/m 3(r = 0.999—0.9999). The relative standard deviation(RSD) were 0.43%—2.00% and the detection limits were from 2.7 ng/m 3 to 88 ng/m 3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM 2.5 of Beijing.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40525016.
文摘Combining the system of rapid collection of ambient particles and ion chromatography, the system of rapid collection of fine particles and ion chromatography (RCFP-IC) was established to automatically analyze on-line the concentrations of water-soluble ions in ambient particles. Here, the general scheme of RCFP-IC is described and its basic performance is tested. The detection limit of RCFP-IC for SO4^2-, NO3^-, NO2^-, Cl^- and F- is below 0.3μg m^-3. The collection efficiency of RCFP-IC increases rapidly with increasing sized particles. For particles larger than 300 nm, the collection efficiency approaches 100%. The precision of RCFP-IC is more than 90% over 28 repetitions. The response of RCFP-IC is very sensitive and no obvious cross-pollution is found during measurement. A comparison of RCFP-IC with an integrated filter measurement indicates that the measurement of RCFP-IC is comparable in both laboratory experiments and field observations. The results of the field experiment prove that RCFP-IC is an effective on-line monitoring system and is helpful in source apportionment and pollution episode monitoring.
基金Project supported by the National Natural Science Foundation of China(Grant No.20877052)the Shanghai Leading Academic Discipline Project(Grant No.S30109)
文摘Thirty-six daily time interval PM2.5 samples were collected in different seasonal dates in urban Shanghai, and the concentrations of four anions (Cl- , NO3-, SO4^2-, C2O4^2-) and five cations (NH+, Na+, K+, Ca2+, Mg2+) were analyzed with ion chromatography. Sulfate, nitrate and ammonium were found to be the dominant species, accounting for about 80% of the total ions. The daily nitrate to sulfate mass ratio ranged from 0.31 to 0.82, indicating that coal combustion was still the main pollution source in Shanghai. The equivalent ratio of ammonium to stun of nitrate and sulfate showed fixed diurnal variation pattern in all the sampling days with higher values in the nighttime, suggesting that fine particles in the night were more neutralized. The oxalate to sulfate ratio was lower in the winter sampling days than that in hotter summer and autumn sampling days. Oxalate was significantly correlated with sulfate in winter sampling days, but not in the summer and autumn, suggesting that the formation mechanism of oxalate and sulfate was similar in winter, however different in hot days.
基金supported by the National Natural Science Foundation of China(51962001,32260292)the National Key Research&Development Projects(2020YFC1522200)the Gansu Provincial Science and Technology Plan Project(20JR5RA051,21YF1FF371).
文摘Atmospheric particle pollution is one of the major factors leading to degradation of ancient wall paintings,particularly heritage sites in arid and semi-arid regions.However,current systematic research on the changes,sources,and influential factors of atmospheric particulate matter and its water-soluble ion concentrations is not sufficient.Thus,the major water-soluble ion concentrations,sources,and influential factors of atmospheric particles PM_(2.5) and PM_(10)(particulate matter with an aerodynamic equivalent diameter≤2.5 and 10.0μm,respectively,in ambient air)were collected from Cave 16 and its ambient exterior environment in the Dunhuang Mogao Grottoes,China,between April 2015 and March 2016.Results showed that the concentrations of PM_(2.5) and PM_(10) inside and outside the cave were the highest in March 2016 and the lowest in December 2015.The higher particle concentration from March to May was related to the frequent occurrence of sand and dust events,and the lower particle concentration from June to September was associated with good diffusion conditions,increased precipitation,and an established cave shelterbelt.The concentration of particulate matter inside the cave was affected by the concentration of particles in the air outside the cave.Ca2+,NH+4,Na+,Cl-,and SO2-4were the main components of the total ions of PM_(2.5) and PM_(10) both inside and outside the cave.The total ions inside the cave were frequently affected by the disturbance of tourists'activities during the peak tourist season from May to August.Under the influence of dust,the total concentrations of Cl-,SO2-4,Na+,NH+4,and Ca2+in particles of different sizes inside and outside the cave increased,and the concentrations of Cl-,SO2-4,Na+,and Ca2+decreased during precipitation period.Backward air mass trajectory analysis suggested that the pollutants were mainly from Xinjiang,China.The pollutant sources of air particulates are straw burning,secondary pollution sources,soil dust,dry spring rivers,and tourist activities.
基金funded by the National Natural Science Foundation of China (41175107 and 41275139)
文摘To further understand the variations of water-soluble ions in PM2.5 in Beijing,the authors observed their concentrations continuously and in high temporal resolution by the system for rapid collection of fine particles and ion chromatography(RCFP-IC) during 12–18 July 2010.These results combined with those of earlier backward trajectory research are used analyzed to determine the causes of concentration changes in water-soluble ions under the influences of two kinds of air masses in summer.The results indicate that concentrations of NO3-,SO42-,and NH4+ were influenced strongly by the continental air mass than by the marine air mass.Cl- and Na+ were not changed significantly.Because the sources of K+,Mg2+,and Ca2+ are mainly concentrated on land,their concentration levels were slightly higher under the control of continental air mass than that of the marine air mass.Variations of NO2- during the observation differed from those of other ions;its concentration was significantly higher under the influence of marine air mass.Moreover,the authors obtain the diurnal variations of eight water-soluble inorganic ions including NH4+,K+,Mg2+,Ca2+,Cl-,NO2-,NO3-,and SO42-.Diurnal variations of NH4+,NO3-,and Cl- showed single peak,which appeared before noon,while SO42- showed two peaks that appeared during rush hours.Those of Mg2+,Ca2+,and K+ showed single peak that appeared in the afternoon.That of NO2- showed with a peak appearing at sunrise and a valley appearing at sunset.
基金National Key Research and Development Program(2016YFC0203603)Guangdong Basic and Applied Basic Research Foundation(2019A1515012008)Youth Fund of National Natural Science s(41605002)
文摘To investigate chemical profiles and formation mechanisms of aerosol particles in winter haze events,comprehensive measurements including hourly concentrations of PM2.5 and water-soluble inorganic ions and related gasphase precursors were conducted via an online monitoring system from January to March of 2016 in Shenzhen,a coastal mega-city in south China.In this study,high concentrations of PM2.5,NO2 and lower levels of O3 were observed during haze periods in comparison with clear days(Visibility>15 km).The major secondary ionic species were NH+4、NO-3 and SO2-4,which varied significantly on haze and clear days.The ratio of NO-3/SO2-4 in haze days was greater than that on clear days and tended to be larger when air pollution became more serious.At the same time,compared with previous studies,it has been found that the ratio has been increasing gradually in Shenzhen,indicating that the motor vehicle exhaust emissions have a more and more important impact on air quality in Shenzhen.Sulfur oxidation rate(SOR)and nitrogen oxidation rate(NOR)was higher during the haze period than that in clean days,indicating efficient gas to particle conversion.Further analysis shows that high concentrations of sulfate might be explained by aqueous oxidation,but gas-phase reactions might dominate nitrate formation.This study also highlights that wintertime nitrate formation can be an important contributor to aerosol particles,especially during haze periods.
基金supported by Central Nonprofit Research Institutes Fundamental Research Funds for Project(No.IDM201003)Natural Science Foundation of China(Nos.41175017+1 种基金41175140)China Desert Meteorological Science Research Funds(Sqj2009014)
文摘Based on Total Suspended Particulates (TSP) observations of Tazhong, Tikanli, Kashi and Minfeng in 2009, combined wa- ter-soluble inorganic ion analyses, this paper studied the spatial and temporal distribution of TSP in the Tarim Basin and analyzed concentration characteristics. The results are as follows: (1) monthly average TSP concentrations shows a similar trend in Tazhong, Tikanli, Kashi and Minfeng with peak values in April-May and low values in November-December. As for the quarter average mass concentration trends, spring has the highest value, followed by summer and autumn, and winter is the lowest; (2) total annual concentration trend of water-soluble inorganic ions in TSP is as follows: Tazhong 〉 Tikanli 〉 Minfeng 〉 Kashi. SO4^2- concentra- tions are 58%, 50%, 54% and 51% of total ion concentration; Ca^2+ concentrations are 13%, 16%, 16% and 11%; Na^+ concentra- tions are 12%, 13%, 10% and 12% and Cl^- concentrations are 12%, 16%, 11% and 22%, respectively. Therefore, sulfate, calcium, sodium and chloride ions are the main inorganic components of TSP in the Tarim Basin; (3) the correlation coefficients of anions and cations in Tikanli, Minfeng, Kashi and Tazhong are 0.99, 0.99, 0.25 and 0.91, respectively; the average anion concentrations are 2.57, 2.12, 2.15 and 3.02 times the average cation concentrations, indicating that ions were unbalanced; (4) SO4^2-/NO3^- ratio is much larger than the ratio of coal-fired emissions SO4^2-/NO3^-, thus the impact of fixed emission sources in the four regions on the atmosphere is far greater than that of mobile emission sources.
基金supported by the National Natural Science Foundation of China(Nos.11775180,11475082 and 41603096)the Graduate Student Research Innovation Project of Hunan Province(No.2014SCX03)the General Program of the Hunan,Provincial Education Department(No.17C1353)
文摘To understand the physical and chemical characteristics, particle size distribution and sources of size-separated aerosols in Lhasa, which is located on the Tibetan Plateau(TP), six sizes of aerosol samples were collected in Lhasa in 2014. Ca^(2+), NH_4^+, NO_3^-,SO_4^(2-)and Cl-were the dominant ions. The ratio of cation equivalents(CE) to anion equivalents(AE) for each particle size segment indicated that the atmospheric aerosols in Lhasa were alkaline. SO_4^(2-)and NO_3^-could be neutralized by Ca^(2+), but could not be neutralized by NH_4^+, according to the [NH_4^+]/[NO_3^-+ SO_4^(2-)] and [Ca^(2+)]/[NO_3^-+ SO_4^(2-)] ratios. Mobile sources were dominant in PM_(0.95-1.5),PM_(1.5-3) and PM_(3-7.2), while stationary sources were dominant in the other three size fractions according to the [NO_3^-]/[SO_4^(2-)] ratios. The particle size distribution of all watersoluble ions during monsoon and non-monsoon periods was characterized by a bimodal distribution due to the different sources and formation mechanisms, and it was revealed that different ions had different sources in different seasons and different particle size segments by combining particle size distribution with correlation analysis. Source analysis of aerosols in Lhasa was performed using the Principal component analysis(PCA) for the first time, which revealed that combustion sources, motor vehicle exhaust, photochemical reaction sources and various types of dust were the main sources of Lhasa aerosols.Furthermore, Lhasa's air quality was also affected by long-distance transmission, expressed as pollutants from South Asia and West Asia, which were transmitted to Lhasa according to backward trajectory analysis.
基金Project supported by the National Natural Science Founding of China(No.20347003,40121303)the Research Grants Council of Hong Kong(No.PolyU5038/01E,PolyU5145/03E)the Area of Strategic Development on Atmospheric and Urban Air Pollution of The Hong Kong Polytechnic University(No.A516,A510).
文摘PM2.5 and PM10 samples were collected at four major cities in the Pearl River Delta (PRD), South China, during winter and summer in 2002. Six water-soluble ions, Na^+, NH4+, K^+, Cl^-, NO3^- and SO4^2- were measured using ion chromatography. On average, ionic species accounted for 53.3% and 40.5% for PM2.5 and PM10, respectively in winter and 39.4% and 35.2%, respectively in summer. Secondary ions such as sulfate, nitrate and ammonium accounted for the major part of the total ionic species. Sulfate was the most abundant species followed by nitrate. Overall, a regional pollution tendency was shown that there were higher concentrations of sulfate, nitrate and ammonium in Guangzhou City than those in the other PRD cities. Significant seasonal variations were also observed with higher levels of species in winter but lower in summer. The Asian monsoon system was favorable for removal and diffusion of air pollutants in PRD in summer while highly loading of local industrial emissions tended to deteriorate the air quality as well. NO3^-/SO4^2- ratio indicated that mobile sources have considerably contribution to the urban aerosol, and stationary sources should not be neglected. Besides the primary emissions, complex atmospheric reactions under favorable weather conditions should be paid more attention for the control of primary emission in the PRD region.
基金partially supported by the Japan Science and Technology Agency, the Japan International Cooperation Agency, and the Science and Technology Research Partnership for Sustainable Development (SATREPS project entitled “Multi-Beneficial Measure for Mitigation of Climate Change in Vietnam and Indochina Countries by Development of Biomass Energy”).
文摘Recently, air quality has significantly improved in developed country, but that issue is of concern in emerging megacity in developing country.In this study, aerosols and their precursor gas were collected by NILU filter pack at two distinct urban sites during the winter and summer in Osaka, Japan and dry and rainy seasons in Ho Chi Minh City(HCMC),Vietnam.The aims are to investigate the contribution of water-soluble inorganic ions(WSIIs) to PM2.5, thermodynamic characterization and possible formation pathway of secondary inorganic aerosol(SIA).The PM2.5 concentration in Osaka(15.8 μg/m^3) is lower than that in HCMC(23.0 μg/m^3), but the concentration of WSIIs in Osaka(9.0 μg/m^3) is two times higher than that in HCMC(4.1 μg/m^3).Moreover, SIA including NH4^+, NO3^-and SO4^2-are major components in WSIIs accounting for 90% and 76%(in molar) in Osaka and HCMC,respectively.Thermodynamic models were used to understand the thermodynamic characterization of urban aerosols.Overall, statistical analysis results indicate that very good agreement(R2> 0.8) was found for all species, except for nitrate aerosol in HCMC.We found that when the crustal species present at high amount, those compositions should be included in model calculation(i.e.in the HCMC situation).Finally, we analyzed the characteristics of NH4^+– NO3^-– SO4^2-system.A possible pathway to produce fine nitrate aerosol in Osaka is via the homogeneous reaction between NH3 and HNO3, while nonvolatile nitrate aerosols can be formed by the heterogeneous reactions in HCMC.
基金supported by the National Basic Research Program (973) of China (No. 2010CB428505)the National Natural Science Foundation of China (No. 41030962,40875078)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (No. 20093228110003)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Jiangsu Provinc eGraduate Cultivation Innovative Project (No. CXZZ11-0616)
文摘To investigate the impact on urban air pollution by crop residual burning outside Nanjing, aerosol concentration, pollution gas concentration, mass concentration, and water-soluble ion size distribution were observed during one event of November 4-9, 2010. Results show that the size distribution of aerosol concentration is bimodal on pollution days and normal days, with peak values at 60- 70 and 200-300 nm, respectively. Aerosol concentration is 104 cm-3.nm-1 on pollution days. The peak value of spectrum distribution of aerosol concentration on pollution days is 1.5-3.3 times higher than that on a normal day. Crop residual burning has a great impact on the concentration of fine particles. Diurnal variation of aerosol concentration is trimodal on pollution days and normal days, with peak values at 03:00, 09:00 and 19:00 local standard time. The first peak is impacted by meteorological elements, while the second and third peaks are due to human activities, such as rush hour traffic. Crop residual burning has the greatest impact on SO2 concentration, followed by NO2, 03 is hardly affected. The impact of crop residual burning on fine particles (〈 2.1 μm) is larger than on coarse particles (〉 2.1 μm), thus ion concentration in fine particles is higher than that in coarse particles. Crop residual burning leads to similar increase in all ion components, thus it has a small impact on the water-soluble ions order. Crop residual burning has a strong impact on the size distribution of K^+, Cl^-, Na^+, and F- and has a weak impact on the size distributions of NH4^+, Ca^2+, NO3^- and SO4^2-.
基金supported by the National Natural Science Foundation of China(No.42005079,41675131)the Beijing Natural Science Foundation(No.8131003)the Beijing Talents Fund(No.2014000021223ZK49)。
文摘To better understand the characteristics and transformation mechanisms of secondary inorganic aerosols,hourly mass concentrations of water-soluble inorganic ions(WSIIs)in PM_(2.5)and their gaseous precursors were measured online from 2016 to 2018 at an urban site in Beijing.Seasonal and diurnal variations in water-soluble ions and gaseous precursors were discussed and their gas-particle conversion and partitioning were also examined,some related parameters were characterized.The(TNH_(3))Rich was also defined to describe the variations of the excess NH_(3)in different seasons.In addition,a sensitivity test was carried out by using ISORROPIA II to outline the driving factors of gas-particle partitioning.In Beijing,the relative contribution of nitrate to PM_(2.5)has increased markedly in recent years,especially under polluted conditions.In the four seasons,only a small portion of NO_(2)in the atmosphere was converted into total nitrate(TNO_(3)),and more than 80%of TNO_(3)occurred in the form of nitrate due to the abundant ammonia.The concentration of total ammonia(TNH_(3))was much higher than that required to neutralize acid gases,and most of the TNH_(3)occurred as gaseous NH_(3).The nitrous acid(HONO)concentration was highly correlated with NH_(3)concentration and had increased significantly in Beijing compared with previous studies.The total chloride(TCl)was the highest in winter,andε(Cl^(-))was more sensitive to variations in the ambient temperature(T)and relative humidity(RH)thanε(NO_(3)^(-)).
基金supported by the National Natural Science Foundation of China (No.41105089)the National Environmental Protection Commonweal Research Project (No.201409073)the Beijing Natural Science Foundation (No.8121002)
文摘The characteristics of water-soluble ions in airborne particulate matter in Beijing were investigated using ion chromatography. The results showed that the total concentrations of ions were 83.7 ± 48.9 μg/m3 in spring, 54.0 ± 17.0 μg/m3 in summer, 54.1 ± 42.9 μg/m3 in autumn, and 88.8 ± 47.7 μg/m3 in winter, respectively. Furthermore, out of all the ions, NO3-,SO42-and NH4+accounted for 81.2% in spring, 78.5% in summer, 74.6% in autumn, and 76.3%in winter. Mg2+and Ca2+were mainly associated with coarse particles, with a peak that ranged from 5.8 to 9.0 μm. Na+, NH4+and Cl-had a multi-mode distribution with peaks that ranged from 0.43 to 1.1 μm and 4.7 to 9.0 μm. K+, NO3-, and SO42-were mainly associated with fine particles, with a peak that ranged from 0.65 to 2.1 μm. The concentrations of Na+, K+,Mg2+, Ca2+, NH4+, Cl-, NO3-and SO42-were 2.69, 2.32, 1.01, 4.84, 16.9, 11.8, 42.0, and 44.1 μg/m3 in particulate matter(PM) on foggy days, respectively, which were 1.4 to 7.3 times higher than those on clear days. The concentrations of these ions were 2.40, 1.66, 0.92, 4.95, 17.5,7.00, 32.6, and 34.7 μg/m3 in PM on hazy days, respectively, which were 1.2–5.7 times higher than those on clear days.
基金supported by the National Environmental Protection Commonweal Research Project(No.201509062 and No.201409073)the National Natural Science Foundation of China(No.41105089)+1 种基金Research Project of Environmental Development Cenre(No.DY-2016-5)State Key Laboratory of Environmental Criteria and Risk Assessment,Chinese Research Academy of Environmental Sciences(No.SKLECRA201637)
文摘The characteristics of water-soluble ions in size-resolved particulate matter were investigated usingion chromatography at Shangdianzi, a regional background station of Beijing, Tianjin, and Hebei. Seasonal total concentrations of ions (Na+, Mg2+, IC, Ca2+, NH+4, Cl-, SO2-4 and NO-3) were 75.5 ± 52.9 μg/m3 in spring, 26.5 ± 12.3 Bg/m3 in summer, 22.7 ± 20.4 μg/m3 in autumn, and 31.1 ± 23.9 μg/m3 in winter, respectively. The secondary ions (NO3, SO2-4 and NH+4), mainly associated with fine particles, accounted for 84.2% in spring, 82.1% in summer, 81.5% in autumn and 76.3% in winter of all ions. Strong correlations were found between NH+4 and SO2-4 (r = 0.95, p 〈 0.01) as well as NH+4 and NO-3 (r = 0.90, p 〈 0.01) in fine particles; while in coarse particles, correlations between Mg2+ and NO-3 (r = 0.80, p 〈 0.01), and Ca2+ and NO2+ (r = 0.85, p 〈 0.01) were found. The concentrations of Na+, IC, Mg2+, Ca2+, NH+4, Cl-, NO3, and SC2-4 were 2.02, 0.81, 0.36, 1.65, 9.58, 4.01, 18.9, and 18.4 μg/m3 in particulate matter from southeast-derived air masses, which were typically 1.58-3.37 times higher than in northwest trajectories. Thus, concentrations of water-soluble ions at this background station were heavily influenced by regional transport of serious pollution derived from biomass burning, coal combustion, industrial and vehicle exhaust emissions from Beijing, Tianjin, and Hebei.
基金This work was financially supported by the National Natural Science Foundation of China (41073019) and the Province Natural Science Foundation of Jiangsu (BK20130998). The authors acknowledge Ke Huang, Huiyu Chen, Weizong Yang, and Jiawen Yuan for their help with the design of the combustion device, sample collection and preparation.
文摘Emissions from major agricultural residues were measured using a self-designed combustion system. Emission factors (EFs) of organic carbon (OC), elemental carbon (EC), and water-soluble ions (WSIs) (K+, NH4+, Na+, Mg2+, Ca2+, Cl-, NO3-, SO42–) in smoke from wheat and rice straw were measured under flaming and smoldering conditions. The OC1/TC (total carbon) was highest (45.8% flaming, 57.7% smoldering) among carbon fractions. The mean EFs for OC (EFOC) and EC (EFEC) were 9.2 ± 3.9 and 2.2 ± 0.7 g/kg for wheat straw and 6.4 ± 1.9 and 1.1 ± 0.3 g/kg for rice straw under flaming conditions, while they were 40.8 ± 5.6 and 5.8 ± 1.0 g/kg and 37.6 ± 6.3 and 5.0 ± 1.4 g/kg under smoldering conditions, respectively. Higher EC ratios were observed in particulate matter (PM) mass under flaming conditions. The OC and EC for the two combustion patterns were significantly correlated (p 〈 0.01, R = 0.95 for wheat straw; p 〈 0.01, R = 0.97 for rice straw), and a higher positive correlation between OC3 and EC was observed under both combustion conditions. WSIs emitted from flaming smoke were dominated by Cl- and K+, which contributed 3.4% and 2.4% of the PM mass for rice straw and 2.2% and 1.0% for wheat straw, respectively. The EFs of Cl- and K+ were 0.73 ± 0.16 and 0.51 ± 0.14 g/kg for wheat straw and 0.25 ± 0.15 and 0.12 ± 0.05 g/kg for rice straw under flaming conditions, while they were 0.42 ± 0.28 and 0.12 ± 0.06 g/kg and 0.30 ± 0.27 and 0.05 ± 0.03 g/kg under smoldering conditions, respectively. Na+, Mg2+, and NH4+ were vital components in PM, comprising from 0.8% (smoldering) to 3.1% (flaming) of the mass. Strong correlations of Cl- with K+, NH4+, and Na+ ions were observed in rice straw and the calculated diagnostic ratios of OC/EC, K+/Na+ and Cl-/Na+ could be useful to distinguishing crop straw burning from other sources of atmospheric pollution.
文摘Atmospheric particulate samples were collected from four densely populated places in a university,and then the concentration levels of indoor particulates were analyzed.Water-soluble cations and anions in the indoor particles were analyzed through ultrasonic extraction and ion chromatography(IC),and total organic carbon(TOC)content was analyzed by using a TOC analyzer.Organic compounds in the indoor particles were analyzed through ultrasonic extraction and GC-MS.The results showed that among the water-soluble ions,the mass concentration of SO2-4in indoor particles was the highest,so it was the main contributor of water-soluble anions,indicating that combustion of fossil fuels and industrial discharge were main sources of indoor particles at the four sampling points.Water-soluble organic carbon was the main component of water-soluble carbon in indoor particles.Among the four sampling points,the mass concentrations of the 18 organic compounds except for glycerol and phthalic acid were the highest in the cafeteria,so organic components in indoor atmospheric particles were mainly from food sources.
文摘Through the integration and analysis platform of particulate matter components,a preliminary comparison was conducted on the pollution contribution of the three winter transit air masses in December to environmental quality,and the changes and related relationships of water-soluble ions and particulate matter elements were analyzed.The results showed that winter transit air masses had a significant impact on the air quality in Hengyang.In the quantitative comparison of the primary pollutant contribution during the transit period of air masses,local sources and transit sources each accounted for half,and the impact of transit source on ambient air quality was much greater than that of seasonal base increase.Fine particulate matter was closely related to secondary ions,and particulate matter was closely related to primary ions.The transit of air masses promoted the improvement of secondary ion conversion rate,and the unit increment of fine particulate matter was greater than that of particulate matter.During the transit period,the mass concentrations of most water-soluble ions and most particulate matter elements maintained synchronous growth,with a superimposed effect.The composition ratio of organic carbon and nitrate ions increased,while the composition ratio of ammonia and sulfate ions decreased.Both disposable ions and secondary conversions in the composition of PM_(2.5)had increases and decreases.The high conversion rate of nitrate and the high composition ratio of ammonia radical in Hengyang indicated that transportation source factors had a significant impact on the local environmental quality of Hengyang.
基金supported by the National Excellent Youth Foundation of China (No. 20625722)the China Postdoctoral Science Foundation (No. 20080430396)
文摘The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between normal and haze days.The highest contributors to PM2.5 were organic carbon(OC),nitrate,and sulfate in haze days and were OC,sulfate,and elemental carbon(EC) in normal days.The concentrations of secondary species such as,NO3^-,SO4^2-,and NH4^+ in haze days were 6.5,3.9,and 5.3 times higher than those in normal days,respectively,while primary species(EC,Ca^2+,K^+) show similar increase from normal to haze days by a factor about 2.2-2.4.OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC(secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days.The significantly increase in the secondary species(SOC,NO3^-,SO4^2-,and NH4^+),especially in NO3^-,caused the worst air quality in this region.Simultaneously,the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions.During the sampling periods,air pollution and visibility had a good relationship with the air mass transport distance;the shorter air masses transport distance,the worse air quality and visibility in Guangzhou,indicating the strong domination of local sources contributing to haze formation.High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.