Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces...Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms.展开更多
Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-kno...Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-known. In this study, a fast and effective method was established for simultaneous determination of 10 T&O compounds, including geosmin, MIB, 2,4,6-trichloroanisole (TCA), 2-methylbenzofuran, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), cis-3-hexenyl acetate, trans,trans-2,4-heptadienal, trans, cis-2,6-nonadienal, and trans-2-decenal in water samples by headspace solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. An orthogonal array experimental design was used to optimize the effects of SPME fiber, extraction temperature, stirring rate, NaC1 content, extraction time, and desorption time. The limits of detection ranged from 0.1 to 73 ng/L were lower than or close to the odor threshold concentrations (OTCs). All the 10 T&O compounds were detected in the 14 water samples including surface water, treatment process water and tap water, taken from a waterworks in Lianyungang City, China. MIB and geosmin were detected in most samples at low concentration. Six T&O compounds (IPMP, IBMP, trans,cis-2,6-nonadienal, 2-methylbenzofuran, trans-2-decenal, and TCA) were effectively decreased in water treatment process (sedimentation and filtration) that is different from cis-3-hexenyl acetate, MIB and geosmin. It is noted that the TCA concentrations at 15.9-122.3 ng/L and the trans,cis-2,6-nonadienal concentrations at 79.9-190.1 ng/L were over 10 times higher than their OTCs in tap water. The variation of the analytes in the all water samples, especially distribution system indicated that distribution system cannot be ignored as a T&O compounds source.展开更多
In this paper, a method using solid-phase extraction (SPE) and gas chromatography-mass spectro- metry (GC-MS) was developed to simultaneously analyze five taste and odor compounds in surface water, i.e., 2- methyl...In this paper, a method using solid-phase extraction (SPE) and gas chromatography-mass spectro- metry (GC-MS) was developed to simultaneously analyze five taste and odor compounds in surface water, i.e., 2- methylisoborneol (2-MIB), 2,4,6-trichloroanisole (TCA), 2-isopropyl-3-methoxy pyrazine (IPMP), 2-isobutyl-3- methoxy pyrazine (IBMP), and trans-l,lO-dimethyl- trans-9-decalol (geosmin, GSM). The mass spectrometry was operated in selective ion monitoring (SIM) mode. Three kinds of SPE columns and three eluting solvents were compared, the C 18 column was chosen as optimum SPE column, and methanol was chosen as the optimum eluting solvent. It was found that the method showed good linearity in the range of 1-200 ng.L^-1 and gave detection limits of 0.5 1.5 ng.L^-1 for individual compounds. Good recoveries (93.5%-108%) and relative standard deviations (1.58%-7.31%) were also obtained. Additionally, concentrations of these taste and odor compounds in Jinan's surface and drinking water were analyzed by applying this method, and the results showed that GSM and 2-MIB were the dominant taste and odor compounds in Jinan's raw water.展开更多
通过对现代工艺六堡茶渥堆过程样品进行感官审评及电子舌、色差、主要生化成分测定,研究六堡茶渥堆过程中色泽及滋味成分的变化规律,并探讨了滋味属性的变化与滋味成分之间的相关性及滋味活度值(taste active value,TAV)。结果表明,现...通过对现代工艺六堡茶渥堆过程样品进行感官审评及电子舌、色差、主要生化成分测定,研究六堡茶渥堆过程中色泽及滋味成分的变化规律,并探讨了滋味属性的变化与滋味成分之间的相关性及滋味活度值(taste active value,TAV)。结果表明,现代工艺渥堆过程中,六堡茶酸味、苦味上升,涩味、鲜味及咸味下降,色差L值波动变化,a、b值逐渐升高,汤色由黄转变为橙红,游离氨基酸、黄酮、茶多酚、茶叶碱、儿茶素总量、氨基酸组分总量显著下降(P<0.05),可可碱、咖啡碱、没食子酸显著上升(P<0.05),水浸出物含量呈波动变化。游离氨基酸、黄酮、酯型儿茶素、DL-儿茶素(DL-catechin, DL-C)及部分氨基酸组分与酸味和苦味显著负相关,与涩味、鲜味及咸味显著正相关,咖啡碱与没食子酸则相反;茶多酚与涩味显著正相关。咖啡碱、可可碱、没食子酸、DL-C及酯型儿茶素对渥堆过程中六堡茶的滋味具显著贡献(TAV> 1),其中酯型儿茶素与没食子酸是六堡茶渥堆过程滋味品质形成的重要化合物,氨基酸组分对六堡茶滋味无显著贡献。展开更多
为探究笃斯越橘、蓝靛果、树莓、黑加仑4种特色寒地浆果滋味特点,及其滋味形成的特征性物质组成,该研究基于超高效液相色谱-四极杆飞行时间质谱(ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass s...为探究笃斯越橘、蓝靛果、树莓、黑加仑4种特色寒地浆果滋味特点,及其滋味形成的特征性物质组成,该研究基于超高效液相色谱-四极杆飞行时间质谱(ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry,UPLC-QTOF-MS)和气相色谱质谱法(gaschromatography-mass spectrometry,GC-MS)分别对4种浆果的非挥发性和挥发性物质进行鉴定和筛选,并进行公因子分析;同时进行4种浆果的电子舌分析及感官评价,得出4种浆果滋味品质模糊综合得分。结果显示:笃斯越橘糖酸比为4.41,特征性挥发性物质为α-松油醇和苯甲醛,电子舌酸味响应值最强;黑加仑糖酸比为3.80,特征性挥发性物质为苯乙醇和乙酸,各滋味响应值相当;蓝靛果糖酸比为3.37,总酚含量最高,特征性挥发性物质为正己醇和3-己烯-1-醇,咸味和鲜味响应值最高;树莓糖酸比为8.19,特征性挥发性物质为乙酸和α-紫罗酮,甜味和苦味响应值最高;经筛选鉴定及统计分析得出4种浆果的非挥发性物质中有显著差异的化合物有10种,分别为塔格糖、乳酸、阿洛酮糖、草酸、柠檬酸、天冬氨酸、茜草苷、6α-甘露二糖、蔗糖和异槲皮素。滋味感官模糊综合评分由大到小为树莓、蓝靛果、笃斯越橘、黑加仑;因子分析结果表明4种浆果滋味组成得分由大到小排序依次为黑加仑、蓝靛果、笃斯越橘和树莓。该研究结果可为4种寒地浆果的产品开发滋味调控提供理论依据。展开更多
基金supported by the Yunnan Key Project of Science and Technology(202202AE090001)Postdoctoral Directional Training Foundation of Yunnan Province(E23174K2)Postdoctoral Research Funding Projects of Yunnan Province,China(E2313442)。
文摘Wild edible Termitomyces mushrooms are popular in Southwest China and umami is important flavor qualities of edible mushrooms.This study aimed to understand the umami taste of Termitomyces intermedius and Termitomyces aff.bulborhizus.Ten umami peptides from aqueous extracts were separated using a Sephadex G-15 gel filtration chromatography.The intense umami fraction was evaluated by both sensory evaluation and electronic tongue.They were identified as KLNDAQAPK,DSTDEKFLR,VGKGAHLSGEH,MLKKKKLA,SLGFGGPPGY,TVATFSSSTKPDD,AMDDDEADLLLLAM,VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK.Seven peptides,except VEDEDEKPKEK,SPEEKKEEET and PEGADKPNK were selectively synthesized to verify their taste characteristics.All these 10 peptides had umami or salt taste.The 10 peptides were conducted by molecular docking to study their interaction with identified peptides and the umami taste receptor T1R1/T1R3.All these 10 peptides perfectly docked the active residues in the T1R3 subunit.Our results provide theoretical basis for the umami taste and address the umami mechanism of two wild edible Termitomyces mushrooms.
基金supported by the National Natural Science Foundation of China(No.21007077,51290283)the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes(No.201201032)
文摘Taste and odor (T&O) problems in drinking water frequently occur because of many compounds present in the water, of which trans-1,10-dimethyl-trans-9-decalol (geosrnin) and 2-methylisoborneol (MIB) are well-known. In this study, a fast and effective method was established for simultaneous determination of 10 T&O compounds, including geosmin, MIB, 2,4,6-trichloroanisole (TCA), 2-methylbenzofuran, 2-isopropyl-3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), cis-3-hexenyl acetate, trans,trans-2,4-heptadienal, trans, cis-2,6-nonadienal, and trans-2-decenal in water samples by headspace solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry. An orthogonal array experimental design was used to optimize the effects of SPME fiber, extraction temperature, stirring rate, NaC1 content, extraction time, and desorption time. The limits of detection ranged from 0.1 to 73 ng/L were lower than or close to the odor threshold concentrations (OTCs). All the 10 T&O compounds were detected in the 14 water samples including surface water, treatment process water and tap water, taken from a waterworks in Lianyungang City, China. MIB and geosmin were detected in most samples at low concentration. Six T&O compounds (IPMP, IBMP, trans,cis-2,6-nonadienal, 2-methylbenzofuran, trans-2-decenal, and TCA) were effectively decreased in water treatment process (sedimentation and filtration) that is different from cis-3-hexenyl acetate, MIB and geosmin. It is noted that the TCA concentrations at 15.9-122.3 ng/L and the trans,cis-2,6-nonadienal concentrations at 79.9-190.1 ng/L were over 10 times higher than their OTCs in tap water. The variation of the analytes in the all water samples, especially distribution system indicated that distribution system cannot be ignored as a T&O compounds source.
文摘In this paper, a method using solid-phase extraction (SPE) and gas chromatography-mass spectro- metry (GC-MS) was developed to simultaneously analyze five taste and odor compounds in surface water, i.e., 2- methylisoborneol (2-MIB), 2,4,6-trichloroanisole (TCA), 2-isopropyl-3-methoxy pyrazine (IPMP), 2-isobutyl-3- methoxy pyrazine (IBMP), and trans-l,lO-dimethyl- trans-9-decalol (geosmin, GSM). The mass spectrometry was operated in selective ion monitoring (SIM) mode. Three kinds of SPE columns and three eluting solvents were compared, the C 18 column was chosen as optimum SPE column, and methanol was chosen as the optimum eluting solvent. It was found that the method showed good linearity in the range of 1-200 ng.L^-1 and gave detection limits of 0.5 1.5 ng.L^-1 for individual compounds. Good recoveries (93.5%-108%) and relative standard deviations (1.58%-7.31%) were also obtained. Additionally, concentrations of these taste and odor compounds in Jinan's surface and drinking water were analyzed by applying this method, and the results showed that GSM and 2-MIB were the dominant taste and odor compounds in Jinan's raw water.
文摘通过对现代工艺六堡茶渥堆过程样品进行感官审评及电子舌、色差、主要生化成分测定,研究六堡茶渥堆过程中色泽及滋味成分的变化规律,并探讨了滋味属性的变化与滋味成分之间的相关性及滋味活度值(taste active value,TAV)。结果表明,现代工艺渥堆过程中,六堡茶酸味、苦味上升,涩味、鲜味及咸味下降,色差L值波动变化,a、b值逐渐升高,汤色由黄转变为橙红,游离氨基酸、黄酮、茶多酚、茶叶碱、儿茶素总量、氨基酸组分总量显著下降(P<0.05),可可碱、咖啡碱、没食子酸显著上升(P<0.05),水浸出物含量呈波动变化。游离氨基酸、黄酮、酯型儿茶素、DL-儿茶素(DL-catechin, DL-C)及部分氨基酸组分与酸味和苦味显著负相关,与涩味、鲜味及咸味显著正相关,咖啡碱与没食子酸则相反;茶多酚与涩味显著正相关。咖啡碱、可可碱、没食子酸、DL-C及酯型儿茶素对渥堆过程中六堡茶的滋味具显著贡献(TAV> 1),其中酯型儿茶素与没食子酸是六堡茶渥堆过程滋味品质形成的重要化合物,氨基酸组分对六堡茶滋味无显著贡献。
文摘为探究笃斯越橘、蓝靛果、树莓、黑加仑4种特色寒地浆果滋味特点,及其滋味形成的特征性物质组成,该研究基于超高效液相色谱-四极杆飞行时间质谱(ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry,UPLC-QTOF-MS)和气相色谱质谱法(gaschromatography-mass spectrometry,GC-MS)分别对4种浆果的非挥发性和挥发性物质进行鉴定和筛选,并进行公因子分析;同时进行4种浆果的电子舌分析及感官评价,得出4种浆果滋味品质模糊综合得分。结果显示:笃斯越橘糖酸比为4.41,特征性挥发性物质为α-松油醇和苯甲醛,电子舌酸味响应值最强;黑加仑糖酸比为3.80,特征性挥发性物质为苯乙醇和乙酸,各滋味响应值相当;蓝靛果糖酸比为3.37,总酚含量最高,特征性挥发性物质为正己醇和3-己烯-1-醇,咸味和鲜味响应值最高;树莓糖酸比为8.19,特征性挥发性物质为乙酸和α-紫罗酮,甜味和苦味响应值最高;经筛选鉴定及统计分析得出4种浆果的非挥发性物质中有显著差异的化合物有10种,分别为塔格糖、乳酸、阿洛酮糖、草酸、柠檬酸、天冬氨酸、茜草苷、6α-甘露二糖、蔗糖和异槲皮素。滋味感官模糊综合评分由大到小为树莓、蓝靛果、笃斯越橘、黑加仑;因子分析结果表明4种浆果滋味组成得分由大到小排序依次为黑加仑、蓝靛果、笃斯越橘和树莓。该研究结果可为4种寒地浆果的产品开发滋味调控提供理论依据。