Selective hydrogenation of chloronitrobenzene(CNB) to chloroaniline(CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity...Selective hydrogenation of chloronitrobenzene(CNB) to chloroaniline(CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased obviously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25 ℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene(p-CNB) reached 99.9%, with the selectivity to p-chloroaniline(p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogenation of other chloro- and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled five times without significant loss of activity.展开更多
The Mo modified Ni/Al_2O_3 catalysts were prepared and sulfided at different temperatures, and their catalytic activity for thioetherification of mercaptans and olefins(or dienes), hydrogenation of dienes and olefins ...The Mo modified Ni/Al_2O_3 catalysts were prepared and sulfided at different temperatures, and their catalytic activity for thioetherification of mercaptans and olefins(or dienes), hydrogenation of dienes and olefins in the thioetherification process using fluidized catalytic cracking(FCC) naphtha as the feedstock was investigated. In order to disclose the correlation between the physicochemical characteristics of catalysts and their catalytic activity, the surface structures and properties of the catalysts sulfided at different temperatures were characterized by the high resolution transmission electronic microscopy(HRTEM), X-ray photoelectron spectroscopy(XPS) and H2-temperature programmed reduction(H_2-TPR) technique. The results showed that an increase of sulfurization temperature not only could promote the sulfurization degree of active metals on the catalysts, but also could adjust the micro-morphology of active species. These changes could improve the catalytic performance of thioetherification, and hydrogenation of dienes and olefins. However, an excess sulfurization temperature was more easily to upgrade the ability of the catalyst for hydrogenation of olefins, which could lead to a decrease of the octane number of the product. It was also showed that a moderate sulfurization temperature not only could improve the catalytic performance of thioetherification and hydrogenation of dienes but also could control hydrogenation of olefins.展开更多
Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of ...Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.展开更多
Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review f...Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.展开更多
Lithium-sulfur batteries attract lots of attention due to their high specific capacity,low cost,and environmental friendliness.However,the low sulfur utilization and short cycle life extremely hinder their application...Lithium-sulfur batteries attract lots of attention due to their high specific capacity,low cost,and environmental friendliness.However,the low sulfur utilization and short cycle life extremely hinder their application.Herein,we design and fabricate a three-dimensional electrode by a simple filtration method to achieve a high-sulfur loading.Biomass porous carbon is employed as a current collector,which not only enhances the electronic transport but also effectively limits the volume expansion of the active material.Meanwhile,an optimized carboxymethyl cellulose binder is chosen.The chemical bonding restricts the shuttle effect,leading to improved electrochemical performance.Under the ultrahigh sulfur load of 28mg/cm2,the high capacity of 18mAh/cm2 is still maintained,and stable cycling performance is obtained.This study demonstrates a viable strategy to develop promising lithium-sulfur batteries with a three-dimensional electrode,which promotes sulfur loading and electrochemical performance.展开更多
The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology o...The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.展开更多
The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of M...The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test.展开更多
Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance ...Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS.展开更多
Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,su...Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,sulfide oxidation reactions in the sulfur cathode,and the lithium dendrite growth resulted from uncontrollable lithium behaviors in lithium anode have inhibited high-rate conversions and uniform deposition to achieve high performances.Thanks to the“adsorption-catalysis”synergetic effects,the reaction kinetics of sulfur reduction reactions/sulfide oxidation reactions composed of the delithiation of Li_(2)S and the interconversions of sulfur species are propelled by lowering the delithiation/diffusion energy barriers,inhibiting polysulfide shuttling.Meanwhile,the anodic plating kinetic behaviors modulated by the catalysts tend to uniformize without dendrite growth.In this review,the various active catalysts in modulating lithium behaviors are summarized,especially for the defect-rich catalysts and single atomic catalysts.The working mechanisms of these highly active catalysts revealed from theoretical simulation to in situ/operando characterizations are also highlighted.Furthermore,the opportunities of future higher performance enhancement to realize practical applications of lithium–sulfur batteries are prospected,shedding light on the future practical development.展开更多
Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-elec...Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.展开更多
Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main act...Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main active phases in CNT and γ-Al2O3 supported Co-Mo catalysts are MoO2 and MOO3, respectively. The TPR results reveal that the reduction peak temperatures of the active species on CNT supported Co-Mo catalyst is lower than those on alumina supported Co-Mo catalyst, indicating that the CNT supports favor the reduction of active species. Catalytic evaluation results displayed that the sulfur content in the reaction products on the CNT supported Co-Mo catalyst is lower than that on the alumina supported Co-Mo catalyst if the HDS reaction was carried out at a temperature above 583 K.展开更多
The reaction kinetics of SO 2 oxidation on Cs Rb V series sulfuric acid catalyst promoted by alkali salts such as cesium and rubidium was studied. A three step reaction mechanism of SO 2 oxidation was proposed, in whi...The reaction kinetics of SO 2 oxidation on Cs Rb V series sulfuric acid catalyst promoted by alkali salts such as cesium and rubidium was studied. A three step reaction mechanism of SO 2 oxidation was proposed, in which it was assumed that oxidation of quadrivalent vanadium complex was a controlling step. Then, a mechanism model equation was concluded according to the three step reaction mechanism. The SO 2 oxidation rate was measured with a non gradient reactor under the conditions of temperature of 380~520?℃ and space velocity of 3?600~7?200?h -1 . Through calculating with Powell nonlinear regression method, the parameters of model equation were obtained: K 1=0.152?exp(-62?073/ (RT) ), K 2=8.18?exp(-2?384/ (RT) ), K 3=0.221?exp(-18?949/ (RT) ). It was found that the model equation could fit with all the experimental reaction rate data very well. [展开更多
Sulfuric acid leaching process was applied to extract nickel from roasting-dissolving residue of a spent catalyst, the effect of different parameters on nickel extraction was investigated by leaching experiments, and ...Sulfuric acid leaching process was applied to extract nickel from roasting-dissolving residue of a spent catalyst, the effect of different parameters on nickel extraction was investigated by leaching experiments, and the leaching kinetics of nickel was analyzed. The experimental results indicate that the effects of particle size and sulfuric acid concentration on the nickel extraction are remarkable; the effect of reaction temperature is mild; while the effect of stirring speed in the range of 400-1 200 r/min is negligible. Decreasing particle size or increasing sulfuric acid concentration and reaction temperature, the nickel extraction efficiency is improved. 93.5% of nickel in residue is extracted under suitable leaching conditions, including particle size (0.074-0.100) mm, sulfuric acid concentration 30% (mass fraction), temperature 80 ~C, reaction time 180 min, mass ratio of liquid to solid 10 and stirring speed 800 r/min. The leaching kinetics analyses shows that the reaction rate of leaching process is controlled by diffusion through the product layer, and the calculated activation energy of 15.8 kJ/mol is characteristic for a diffusion controlled process.展开更多
Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active mat...Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active materials severely restrict the development of Li-S batteries.Constructing conductive sulfur scaffolds with catalytic conversion capability for cathodes is an efficient approach to solving above issues.Vanadium-based compounds and their heterostructures have recently emerged as functional sulfur catalysts supported on conductive scaffolds.These compounds interact with polysulfides via different mechanisms to alleviate the shuttle effect and accelerate the redox kinetics,leading to higher Coulombic efficiency and enhanced sulfur utilization.Reports on vanadium-based nanomaterials in Li-S batteries have been steadily increasing over the past several years.In this review,first,we provide an overview of the synthesis of vanadium-based compounds and heterostructures.Then,we discuss the interactions and constitutive relationships between vanadium-based catalysts and polysulfides formed at sulfur cathodes.We summarize the mechanisms that contribute to the enhancement of electrochemical performance for various types of vanadium-based catalysts,thus providing insights for the rational design of sulfur catalysts.Finally,we offer a perspective on the future directions for the research and development of vanadium-based sulfur catalysts.展开更多
Fructone (2-methyl-2-ethylacetoacetate-1, 3-dioxolane), a flavouring material, has been synthesized from ethyl acetoacetate and glycol using five water-soluble Brφnsted acid ionic liquids as catalysts for the first...Fructone (2-methyl-2-ethylacetoacetate-1, 3-dioxolane), a flavouring material, has been synthesized from ethyl acetoacetate and glycol using five water-soluble Brφnsted acid ionic liquids as catalysts for the first time. The used Brφnsted acid ionic liquids include [Hmim]Tfa, [Hmim]Tsa, [Hmim]BF4, [Bmim]HSO4, [Bmim]H2P04, and [Hmim]BF4 showed the highest catalytic activity for the preparation of fructone. After reaction, the product could be isolated from the reaction system automatically, and the ionic liquid could be directly reused without dehydration.展开更多
Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In...Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In this study, the chemisorption of sulfur on the surface of deactivated Pd/C was detected by energy dispersive spec-trometer and X-ray photoelectron spectroscopy. Sulfur compounds poison the Pd/C catalyst and increase the forma-tion of azo deposit, reducing the activity of catalyst. We report a mild method to regenerate the Pd/C catalyst: wash the deposit by N,N-dimethylformamide and oxidize the chemisorbed sulfur by hot air. The regenerated Pd/C cata-lyst can be reused at least ten runs with stable activity.展开更多
Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble meta...Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.展开更多
The catalytic activity of ceria-supported Pd for selective hydrogenation of CO is well preserved in the presence of 30 ppm H2S due to the parallel oxidation of sulfur by CeO2 under standard methanol synthesis conditio...The catalytic activity of ceria-supported Pd for selective hydrogenation of CO is well preserved in the presence of 30 ppm H2S due to the parallel oxidation of sulfur by CeO2 under standard methanol synthesis conditions. The bifunctional nature of this catalyst opens a route for the conversion of sulfur-contaminated gas streams such as the integrated gasification combined cycle syngas or biogas into liquid fuels if desulfurization by conventional means is not practical.展开更多
Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%)...Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent, and found that supported sulfuric acid catalyst exhibited a very high catalytic activity. Under the conditions of reaction temperature 160-170℃, space velocity (SV) 1200 h-1, the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg穔gcat-1穐-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.展开更多
Zirconia-loaded sulfuric acid (SO2-/ZrO2) catalysts were prepared by impregnation method, molded by punch tablet machine and characterized by X-ray diffraction. SO4^2-/ZrO2 catalyst was used to obtain glycerol triac...Zirconia-loaded sulfuric acid (SO2-/ZrO2) catalysts were prepared by impregnation method, molded by punch tablet machine and characterized by X-ray diffraction. SO4^2-/ZrO2 catalyst was used to obtain glycerol triacetate (GTA) directly from glycerin. The effect of some factors, such as different temperatures of calcination and catalysts molded or not, on the reusable times of catalysts and the yield of GTA were investigated. The optimum reaction conditions were shown as follows: the reaction temperature was 403 K; the reaction time continued for 8 h; the amount of molded catalysts was 5 wt% of glycerin and the molar ratio of glycerin to acetic acid was 1 : 8. The yield of GTA was 97.93% under the optimum condition.展开更多
基金the financial supports of the Natural Science Foundation of China(No.21303139)the Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(No.CSPC2013-1)+1 种基金the Key Fund Project of Educational Department of Sichuan Province(No.14ZA0126)the Doctoral Initiating Fund of China West Normal University(No.10B010)
文摘Selective hydrogenation of chloronitrobenzene(CNB) to chloroaniline(CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased obviously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25 ℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene(p-CNB) reached 99.9%, with the selectivity to p-chloroaniline(p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogenation of other chloro- and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled five times without significant loss of activity.
基金support provided by the National Natural Science Foundation of China(Granted No.21276276)
文摘The Mo modified Ni/Al_2O_3 catalysts were prepared and sulfided at different temperatures, and their catalytic activity for thioetherification of mercaptans and olefins(or dienes), hydrogenation of dienes and olefins in the thioetherification process using fluidized catalytic cracking(FCC) naphtha as the feedstock was investigated. In order to disclose the correlation between the physicochemical characteristics of catalysts and their catalytic activity, the surface structures and properties of the catalysts sulfided at different temperatures were characterized by the high resolution transmission electronic microscopy(HRTEM), X-ray photoelectron spectroscopy(XPS) and H2-temperature programmed reduction(H_2-TPR) technique. The results showed that an increase of sulfurization temperature not only could promote the sulfurization degree of active metals on the catalysts, but also could adjust the micro-morphology of active species. These changes could improve the catalytic performance of thioetherification, and hydrogenation of dienes and olefins. However, an excess sulfurization temperature was more easily to upgrade the ability of the catalyst for hydrogenation of olefins, which could lead to a decrease of the octane number of the product. It was also showed that a moderate sulfurization temperature not only could improve the catalytic performance of thioetherification and hydrogenation of dienes but also could control hydrogenation of olefins.
基金supported by Thailand Science Research and Innovation Fund Chulalongkorn University,Thailand(IND66210014)。
文摘Hydrogen sulfide(H_(2)S) not only presents significant environmental concerns but also induces severe corrosion in industrial equipment,even at low concentrations.Among various technologies,the selective oxidation of hydrogen sulfide(SOH_(2)S) to elemental sulfur(S) has emerged as a sustainable and environmentally friendly solution.Due to its unique properties,iron oxide has been extensively investigated as a catalyst for SOH_(2)S;however,rapid deactivation has remained a significant drawback.The causes of iron oxide-based catalysts deactivation mechanisms in SOH_(2)S,including sulfur or sulfate deposition,the transformation of iron species,sintering and excessive oxygen vacancy formation,and active site loss,are thoroughly examined in this review.By focusing on the deactivation mechanisms,this review aims to provide valuable insights into enhancing the stability and efficiency of iron-based catalysts for SOH_(2)S.
基金The authors acknowledge funding from National Natural Science Foundation of China(52302307)Shaanxi Province(2023-ZDLGY-24,2023-JC-QN-0473)+2 种基金project funded by China Postdoctoral Science Foundation(2023MD734210)the Open Foundation of State Key Laboratory for Advanced Metals and Materials(2022-Z01)Shaanxi Provincial Department of Education industrialization project(21JC018).
文摘Engineering transition metal compounds(TMCs)catalysts with excellent adsorption-catalytic ability has been one of the most effec-tive strategies to accelerate the redox kinetics of sulfur cathodes.Herein,this review focuses on engineering TMCs catalysts by cation doping/anion doping/dual doping,bimetallic/bi-anionic TMCs,and TMCs-based heterostructure composites.It is obvious that introducing cations/anions to TMCs or constructing heterostructure can boost adsorption-catalytic capacity by regulating the electronic structure including energy band,d/p-band center,electron filling,and valence state.Moreover,the elec-tronic structure of doped/dual-ionic TMCs are adjusted by inducing ions with different electronegativity,electron filling,and ion radius,resulting in electron redistribution,bonds reconstruction,induced vacancies due to the electronic interaction and changed crystal structure such as lat-tice spacing and lattice distortion.Different from the aforementioned two strategies,heterostructures are constructed by two types of TMCs with different Fermi energy levels,which causes built-in electric field and electrons transfer through the interface,and induces electron redistribution and arranged local atoms to regulate the electronic structure.Additionally,the lacking studies of the three strategies to comprehensively regulate electronic structure for improving catalytic performance are pointed out.It is believed that this review can guide the design of advanced TMCs catalysts for boosting redox of lithium sulfur batteries.
基金This study was supported by the National Natural Science Foundation of China(51702063 and 51672056)Natural Science Foundation of Heilongjiang(LC2018004)+1 种基金China Postdoctoral Science Foundation(2018M630340,2019T120254)the Fundamental Research Funds for the Central University.
文摘Lithium-sulfur batteries attract lots of attention due to their high specific capacity,low cost,and environmental friendliness.However,the low sulfur utilization and short cycle life extremely hinder their application.Herein,we design and fabricate a three-dimensional electrode by a simple filtration method to achieve a high-sulfur loading.Biomass porous carbon is employed as a current collector,which not only enhances the electronic transport but also effectively limits the volume expansion of the active material.Meanwhile,an optimized carboxymethyl cellulose binder is chosen.The chemical bonding restricts the shuttle effect,leading to improved electrochemical performance.Under the ultrahigh sulfur load of 28mg/cm2,the high capacity of 18mAh/cm2 is still maintained,and stable cycling performance is obtained.This study demonstrates a viable strategy to develop promising lithium-sulfur batteries with a three-dimensional electrode,which promotes sulfur loading and electrochemical performance.
基金supported by Fundamental Research Program of Shanxi Province,China(202203021212245)the Science and Technology Achievement Transformation Guidance Special Program of Shanxi Province,China(202104021301052)the Patent Transformation Program of Shanxi Province,China(202306013).
文摘The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis.
基金supported by the Fundamental Research Funds for the Central Universities(222201817001)Shanghai Sailing Program(21YF140800).
文摘The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test.
基金supported by the National Natural Science Foundation of China(No.21808079,21878330 and 21676298)Key Research and Development Program of Shandong Province(No.2019GSF109115)+2 种基金the National Science and Technology Major Project,the CNPC Key Research Project(2016E-0707)the King Abdullah University of Science and Technology(KAUST) Office of Sponsored Research(OSR) under Award(No.OSR-2019-CPF-4103.2)the Project of National Key R&D Program of China(2019YFC1907700)。
文摘Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS.
基金fellowship funding supported by the Alexander von Humboldt Foundationfinancial funding support from the Natural Science Foundation of Jiangsu Province(BK.20210636)Natural Science Foundation of China(21773294 and 21972164)。
文摘Lithium–sulfur batteries exhibit unparalleled merits in theoretical energy density(2600 W h kg^(-1))among next-generation storage systems.However,the sluggish electrochemical kinetics of sulfur reduction reactions,sulfide oxidation reactions in the sulfur cathode,and the lithium dendrite growth resulted from uncontrollable lithium behaviors in lithium anode have inhibited high-rate conversions and uniform deposition to achieve high performances.Thanks to the“adsorption-catalysis”synergetic effects,the reaction kinetics of sulfur reduction reactions/sulfide oxidation reactions composed of the delithiation of Li_(2)S and the interconversions of sulfur species are propelled by lowering the delithiation/diffusion energy barriers,inhibiting polysulfide shuttling.Meanwhile,the anodic plating kinetic behaviors modulated by the catalysts tend to uniformize without dendrite growth.In this review,the various active catalysts in modulating lithium behaviors are summarized,especially for the defect-rich catalysts and single atomic catalysts.The working mechanisms of these highly active catalysts revealed from theoretical simulation to in situ/operando characterizations are also highlighted.Furthermore,the opportunities of future higher performance enhancement to realize practical applications of lithium–sulfur batteries are prospected,shedding light on the future practical development.
基金supported by the National Natural Science Foundation of China(52272194)Liaoning Revitalization Talents Program(XLYC2007155)。
文摘Lithium metal batteries are regarded as prominent contenders to address the pressing needs owing to the high theoretical capacity.Toward the broader implementation,the primary obstacle lies in the intricate multi-electron,multi-step redox reaction associated with sluggish conversion kinetics,subsequently giving rise to a cascade of parasitic issues.In order to smooth reaction kinetics,catalysts are widely introduced to accelerate reaction rate via modulating the energy barrier.Over past decades,a large amount of research has been devoted to the catalyst design and catalytic mechanism exploration,and thus the great progress in electrochemical performance has been realized.Therefore,it is necessary to make a comprehensive review toward key progress in catalyst design and future development pathway.In this review,the basic mechanism of lithium metal batteries is provided along with corresponding advantages and existing challenges detailly described.The main catalysts employed to accelerate cathode reaction with emphasis on their catalytic mechanism are summarized as well.Finally,the rational design and innovative direction toward efficient catalysts are suggested for future application in metal-sulfur/gas battery and beyond.This review is expected to drive and benefit future research on rational catalyst design with multi-parameter synergistic impacts on the activity and stability of next-generation metal battery,thus opening new avenue for sustainable solution to climate change,energy and environmental issues,and the potential industrial economy.
文摘Effects of carbon nanotubes (CNT) and alumina (γ-Al2O3) supports on the catalytic activities of hydrodesulfurization (HDS) process over Co- Mo catalyst have been studied. XRD results indicated that the main active phases in CNT and γ-Al2O3 supported Co-Mo catalysts are MoO2 and MOO3, respectively. The TPR results reveal that the reduction peak temperatures of the active species on CNT supported Co-Mo catalyst is lower than those on alumina supported Co-Mo catalyst, indicating that the CNT supports favor the reduction of active species. Catalytic evaluation results displayed that the sulfur content in the reaction products on the CNT supported Co-Mo catalyst is lower than that on the alumina supported Co-Mo catalyst if the HDS reaction was carried out at a temperature above 583 K.
文摘The reaction kinetics of SO 2 oxidation on Cs Rb V series sulfuric acid catalyst promoted by alkali salts such as cesium and rubidium was studied. A three step reaction mechanism of SO 2 oxidation was proposed, in which it was assumed that oxidation of quadrivalent vanadium complex was a controlling step. Then, a mechanism model equation was concluded according to the three step reaction mechanism. The SO 2 oxidation rate was measured with a non gradient reactor under the conditions of temperature of 380~520?℃ and space velocity of 3?600~7?200?h -1 . Through calculating with Powell nonlinear regression method, the parameters of model equation were obtained: K 1=0.152?exp(-62?073/ (RT) ), K 2=8.18?exp(-2?384/ (RT) ), K 3=0.221?exp(-18?949/ (RT) ). It was found that the model equation could fit with all the experimental reaction rate data very well. [
基金Project (50574101) supported by the National Natural Science Foundation of ChinaProject (2003UDBEA00C020) supported by the Collaborative Project of School and Province of Yunnan Province,China
文摘Sulfuric acid leaching process was applied to extract nickel from roasting-dissolving residue of a spent catalyst, the effect of different parameters on nickel extraction was investigated by leaching experiments, and the leaching kinetics of nickel was analyzed. The experimental results indicate that the effects of particle size and sulfuric acid concentration on the nickel extraction are remarkable; the effect of reaction temperature is mild; while the effect of stirring speed in the range of 400-1 200 r/min is negligible. Decreasing particle size or increasing sulfuric acid concentration and reaction temperature, the nickel extraction efficiency is improved. 93.5% of nickel in residue is extracted under suitable leaching conditions, including particle size (0.074-0.100) mm, sulfuric acid concentration 30% (mass fraction), temperature 80 ~C, reaction time 180 min, mass ratio of liquid to solid 10 and stirring speed 800 r/min. The leaching kinetics analyses shows that the reaction rate of leaching process is controlled by diffusion through the product layer, and the calculated activation energy of 15.8 kJ/mol is characteristic for a diffusion controlled process.
基金supported by the National Natural Science Foundation of China(51962002)the Natural Science Foundation of Guangxi(2022GXNSFAA035463)the National Key R&D Program of China(2022YFB2404402)。
文摘Lithium-sulfur(Li-S)batteries have attracted wide attention for their high theoretical energy density,low cost,and environmental friendliness.However,the shuttle effect of polysulfides and the insulation of active materials severely restrict the development of Li-S batteries.Constructing conductive sulfur scaffolds with catalytic conversion capability for cathodes is an efficient approach to solving above issues.Vanadium-based compounds and their heterostructures have recently emerged as functional sulfur catalysts supported on conductive scaffolds.These compounds interact with polysulfides via different mechanisms to alleviate the shuttle effect and accelerate the redox kinetics,leading to higher Coulombic efficiency and enhanced sulfur utilization.Reports on vanadium-based nanomaterials in Li-S batteries have been steadily increasing over the past several years.In this review,first,we provide an overview of the synthesis of vanadium-based compounds and heterostructures.Then,we discuss the interactions and constitutive relationships between vanadium-based catalysts and polysulfides formed at sulfur cathodes.We summarize the mechanisms that contribute to the enhancement of electrochemical performance for various types of vanadium-based catalysts,thus providing insights for the rational design of sulfur catalysts.Finally,we offer a perspective on the future directions for the research and development of vanadium-based sulfur catalysts.
基金This work was financially supported by the Key Project of Chinese Ministry of Education(No.105075)National Natural Science Foundation of China(No.20503016).
文摘Fructone (2-methyl-2-ethylacetoacetate-1, 3-dioxolane), a flavouring material, has been synthesized from ethyl acetoacetate and glycol using five water-soluble Brφnsted acid ionic liquids as catalysts for the first time. The used Brφnsted acid ionic liquids include [Hmim]Tfa, [Hmim]Tsa, [Hmim]BF4, [Bmim]HSO4, [Bmim]H2P04, and [Hmim]BF4 showed the highest catalytic activity for the preparation of fructone. After reaction, the product could be isolated from the reaction system automatically, and the ionic liquid could be directly reused without dehydration.
基金Supported by the Natural Science Foundation of Zhejiang Provincial (LYI2B03009) and Program for Zhejiang Leading Team of Science and Technology Innovation (2011 R09020-03).
文摘Deactivation of Pd/C catalyst often occurs in liquid hydrogenation using industrial materials. For in-stance, the Pd/C catalyst is deactivated severely in the hydrogenation of N-(3-nitro-4-methoxyphenyl) acetamide. In this study, the chemisorption of sulfur on the surface of deactivated Pd/C was detected by energy dispersive spec-trometer and X-ray photoelectron spectroscopy. Sulfur compounds poison the Pd/C catalyst and increase the forma-tion of azo deposit, reducing the activity of catalyst. We report a mild method to regenerate the Pd/C catalyst: wash the deposit by N,N-dimethylformamide and oxidize the chemisorbed sulfur by hot air. The regenerated Pd/C cata-lyst can be reused at least ten runs with stable activity.
文摘Y zeolite supporting noble metal catalysts, as the important industrial catalysts for aromatics hydrogenation, have received increasing attention in recent years. Pd M/Y bimetallic catalysts, where M is non noble metal element, were prepared to investigate the effects of the addition of a second metal. Pd M/Y catalysts were evaluated under the following conditions: H 2 pressure 4.2 MPa, MHSV 4.0 h -1 , sulfur content in feed 3000 μg/g. The microreactor results indicated that the second metal remarkably affects the hydrogenation activity of Pd/Y catalysts. Among them, Cr and W improve the sulfur resistance of Pd/Y, but La, Mn, Mo and Ag make the sulfur resistance worse and the second metals have no evident influence on product selectivity and acidic properties of the catalysts.
基金Clean Energy Facing the Future program at the Dalian Institute of Chemical Physics
文摘The catalytic activity of ceria-supported Pd for selective hydrogenation of CO is well preserved in the presence of 30 ppm H2S due to the parallel oxidation of sulfur by CeO2 under standard methanol synthesis conditions. The bifunctional nature of this catalyst opens a route for the conversion of sulfur-contaminated gas streams such as the integrated gasification combined cycle syngas or biogas into liquid fuels if desulfurization by conventional means is not practical.
文摘Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste. We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent, and found that supported sulfuric acid catalyst exhibited a very high catalytic activity. Under the conditions of reaction temperature 160-170℃, space velocity (SV) 1200 h-1, the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg穔gcat-1穐-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.
基金supported by the National High Technology Research and Development Program of China (No. 2009AA03Z222 and No. 2009AA05Z437)the "Six Talents Pinnacle Program" of Jiangsu Province of China (No. 2008028)
文摘Zirconia-loaded sulfuric acid (SO2-/ZrO2) catalysts were prepared by impregnation method, molded by punch tablet machine and characterized by X-ray diffraction. SO4^2-/ZrO2 catalyst was used to obtain glycerol triacetate (GTA) directly from glycerin. The effect of some factors, such as different temperatures of calcination and catalysts molded or not, on the reusable times of catalysts and the yield of GTA were investigated. The optimum reaction conditions were shown as follows: the reaction temperature was 403 K; the reaction time continued for 8 h; the amount of molded catalysts was 5 wt% of glycerin and the molar ratio of glycerin to acetic acid was 1 : 8. The yield of GTA was 97.93% under the optimum condition.