In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in...In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.展开更多
In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is o...In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.展开更多
To further improve the utilization efficiency of solar energy and the performance of solar heat pump heating systems,a new heating mode of a solar air-source heat pump(SASHP)is proposed,and the characteristics and p...To further improve the utilization efficiency of solar energy and the performance of solar heat pump heating systems,a new heating mode of a solar air-source heat pump(SASHP)is proposed,and the characteristics and performance of the heat pump part of this new heating system are studied.Based on a SASHP with 10 kW,the mathematical model of this system is built,and the characteristics and performance are concluded from the simulation analysis at different environmental temperatures and output water temperatures.The results show that the performance of heat pumps can be greatly improved based on the new SASHP.When the environmental temperature is 7 ℃,the coefficient of performance(COP)of the air-source heat pump(ASHP)can be increased by 26% at most.This paper sets up a base for further study on the heating system with this new SASHP in the heating season.展开更多
A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building...A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.展开更多
In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1...In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.展开更多
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her...Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.展开更多
An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the ...An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior. Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hot-water production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.展开更多
A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water t...A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.展开更多
An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The...An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The simulation model is built with the framework of two-phase fluid network,where the compressor is separated as two compressors and the economizer is treated as two heat exchangers in the injection path and the main refrigerant path.With the validated simulation model,the heating performance is analyzed,and the results show that the coefficient of performance(COP)of ASHP with refrigerant injection is higher than 1.4 and the discharge temperature is less than 100℃ when the outdoor temperature is-20℃.The above performance ensures that the air conditioning system and EVs can operate normally with high efficiency even in the cold winter,which is much helpful for the practicability of EVs.展开更多
The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, ...The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat.展开更多
The electrification of building heating is an effective way to meet the global carbon target. As a clean and sustainable electrified heating technology, air-source heat pumps (ASHPs) are widely used in areas lacking c...The electrification of building heating is an effective way to meet the global carbon target. As a clean and sustainable electrified heating technology, air-source heat pumps (ASHPs) are widely used in areas lacking central heating. However, as a major component of space heating, heating terminals might not fit well with ASHP in order to achieve both intermittency and comfort. Therefore, this study proposes a novel radiation-adjustable heating terminal combined with an ASHP to achieve electrification, intermittency, and better thermal comfort. Radiant terminals currently suffer from three major problems: limited maximum heating capacity, inability to freely adapt, and difficulty with combining them with ASHPs. These problems were solved by improving the structural design of the novel terminal (Improvement A–E). Results showed that the maximum heating capacity increased by 23.6% and radiation heat transfer ratio from 10.1% to 30.9% was provided for users with the novel terminal. Further, new flat heat pipe (FHP) design improved stability (compressor oil return), intermittency (refrigerant thermal inertia), and safety (refrigerant leakage risk) by reducing the length of exposed refrigerant pipes. Furthermore, a new phased operation strategy was proposed for the novel terminal, and the adjustability of the terminal was improved. The results can be used as reference information for decarbonizing buildings by electrifying heating terminals.展开更多
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr...To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.展开更多
The building sector contributes a large ratio of final energy consumption,and improving building energy efficiency is expected to play a significant role in mitigating its carbon dioxide emission.Herein,we collected t...The building sector contributes a large ratio of final energy consumption,and improving building energy efficiency is expected to play a significant role in mitigating its carbon dioxide emission.Herein,we collected the on-site measurement data to investigate the techno-economic performances of different heat pump types that exist in building space heating projects in Qingdao,China.An in-depth analysis revealed the temperature variations of measured low-grade heat sources over the whole heating supply period,and urban sewage water shows high stable heat energy quality compared with seawater and geothermal heat resources.Operational behaviors including cycling inlet and outlet temperature of the selected heat pumps were illustrated,and analysis evaluated detailed effects of operational parameters on energy efficiency performances.Then the relationship between COPs distributions of heat pumps and operational conditions was examined further,and the positive effect of the rising temperature of heat sources on energy efficiency improvement of heat pump is highlighted when the heating supply temperature is higher.Furthermore,we analyzed the economic and carbon emission performance of the heat pump system,and results show that electricity price plays a vital role in the lifespan energy cost saving potential,and the heat pump could serve as a promising approach in reducing CO_(2) related to the building space heating.Finally,we recommended suggestions for improving the overall energy efficiency and cost competitiveness of decentralized heat pump systems for building space heating.展开更多
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e...For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.展开更多
Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having ...Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.展开更多
This paper presents the results of“Upgrade and Save”,a program to upgrade the standard electric furnaces and air-conditioning units in Mobile Homes for energy-efficient heat pumps.This program is implemented in North...This paper presents the results of“Upgrade and Save”,a program to upgrade the standard electric furnaces and air-conditioning units in Mobile Homes for energy-efficient heat pumps.This program is implemented in North Caro-lina,USA and pays about$700 through a rebate provided by the North Carolina State Energy Office to the Mobile Homes’owners.The goal of this project is to subsidize low-income families by lowering their heating cost in the winter as well as improving their homes’indoor thermal comfort.More than 300 mobile homes have participated in this program.Field measurements,meter readings of the actual electrical consumption,and annual building energy simu-lation were used to measure the dollar saving and the indoor thermal comfort improvement in the mobile homes after the heating system upgrade.This research proved that the dollar saving of using the heat pump for heating in mobile homes ranges from$51 to$128 annually.展开更多
In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model wi...In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model with freezing/melting phase changes is developed for the heat transfer analysis of the soil.Based on the numerical solution of the model,the variation trends of underground soil temperature of the SGSHPS operated in various alternate operation modes are discussed.The results indicate that,for the day-night and short-time interval alternate operation modes without solar energy,the operation time fraction of a solar heat source should be confined to from 50% to 58% when operated in an alternate period of 24 h.Meanwhile,the disadvantages of a natural resumption of soil temperature can be overcome effectively by solar energy filling,and an optimal operation effect can be achieved by integrating the mode of solar energy filling with other alternate modes.In addition,the accuracy of the presented model is verified by the experimental data of borehole wall temperatures.The conclusions can provide a reference for the optimization operation of the SGSHPS.展开更多
The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The resul...The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.展开更多
Aiming to resolve the problem that conventional sewage source heat pump systems cannot satisfy heat peak loads of buildings,a new idea that the freezing latent heat is exacted as the auxiliary heat source at the peak ...Aiming to resolve the problem that conventional sewage source heat pump systems cannot satisfy heat peak loads of buildings,a new idea that the freezing latent heat is exacted as the auxiliary heat source at the peak heat load is proposed.First,on the basis of sewage characteristics,a freezing latent heat exchanger is developed to safely eliminate ice,continuously extract heat and remove sewage soft-dirt.A reasonable form of the urban sewage source heat pump system with freezing latent heat collection is presented.Then,the feasibility of the system is theoretically analyzed.The calculation results under typical operating conditions show that the heating ability of the new system is higher than that of the conventional one and the ratio of these two highest heating rates is between 4.5 and 8.7,which proves that the new system has great application potential in cold regions.展开更多
The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in...The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in the cooling mode and a higher evaporating temperature in the heating mode,and the ground heat exchanger(GHE)in the DX GSHP has a low thermal resistance.Therefore,the coefficient of performance(COP)of the DX GSHP is higher than that of the GSHP.In addition,the system performance of the DX GSHP system is higher than that of the conventional GSHP system because there are no secondary solution loops and water circulating pumps in the DX GSHP system.The experimental energy performance of the DX GSHP system is also investigated based on the actual operational data.The tested DX GSHP system is installed in Xiangtan,China.The U-vertical GHE of the DX GSHP is buried in a water well.The length and the outside nominal diameter of the GHE are 42 m and 12.7 mm,respectively.The experimental results show that the maximum(COP)and the average COP of the DX GSHP system in the heating mode are 5.95 and 4.72,respectively.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0137200)National Natural Science Foundation of China(Grant Nos.52309147 and 52179114).
文摘In unconsolidated sandstone reservoirs,presence of numerous movable grains and a complex grain size composition necessitates a clear understanding of the physical clogging process for effective groundwater recharge in groundwater-source heat pump systems.To investigate this,a series of seepage experiments was conducted under in situ stress conditions using unconsolidated sandstone samples with varying grain compositions.The clogging phenomenon arises from the combined effects of grain migration and compaction,wherein the migration of both original and secondary crushed fine-grain particles blocks the seepage channels.Notably,grain composition influences the migration and transport properties of the grains.For samples composed of smaller grains,the apparent permeability demonstrates a transition from stability to decrease.In contrast,samples with larger grains experience a skip at the stability stage and directly enter the decrease stage,with a minor exception of a slight increase observed.Furthermore,a unique failure mode characterized by diameter shrinkage in the upper part of the sample is observed due to the combined effects of grain migration and in situ stress-induced compaction.These testing results contribute to a better understanding of the clogging mechanism caused by the coupled effects of grain migration and compaction during groundwater recharge in unconsolidated sandstone reservoirs used in groundwater-source heat pump systems.
文摘In the United Kingdom, means of meeting domestic heating is being electrified to decarbonise in effort to reduce the greenhouse gases emissions from the burning of natural gas. Therefore, the uptake of heat pumps is on the increase. The operation and working principle of heat pumps must be well understood in the investigations of their impacts on the grid and the grid assets, especially distribution transformers which could be overloaded due to higher peak load demand. This work develops an operational model of heat pumps as combined space heating and domestic hot water provider implemented in MATLAB. The developed operational model of heat pumps is adaptable and repeatable for different input parameters. The developed model is used to generate daily average demand profiles of heat pumps for a typical winter weekday and a typical summer weekday. The generated demand profiles of heat pumps by the developed model compared well with the demand profiles of heat pumps generated from actual field projects which are usually expensive and time-tasking.
基金The National Natural Science Foundation of China(No.50676018)the National Key Technology R&D Program of China during the 11th Five-Year Plan Period(No.2008BAJ12B02)
文摘To further improve the utilization efficiency of solar energy and the performance of solar heat pump heating systems,a new heating mode of a solar air-source heat pump(SASHP)is proposed,and the characteristics and performance of the heat pump part of this new heating system are studied.Based on a SASHP with 10 kW,the mathematical model of this system is built,and the characteristics and performance are concluded from the simulation analysis at different environmental temperatures and output water temperatures.The results show that the performance of heat pumps can be greatly improved based on the new SASHP.When the environmental temperature is 7 ℃,the coefficient of performance(COP)of the air-source heat pump(ASHP)can be increased by 26% at most.This paper sets up a base for further study on the heating system with this new SASHP in the heating season.
基金The National Natural Science Foundation of China(No. 51036001 )the Natural Science Foundation of Jiangsu Province(No. BK2010043)
文摘A new ground source heat pump system combined with radiant heating/cooling is proposed, and the principles and the advantages of the system are analyzed. A demonstration of the system is applied to a rebuilt building: Xijindu exhibition hall, which is located in Zhenjiang city in China. Numerical studies on the thermal comfort and energy consumption of the system are carded out by using TRNSYS software. The results indicate that the system with the radiant floor method or the radiant ceiling method shows good thermal comfort without mechanical ventilation in winter. However, the system with either of the methods should add mechanical ventilation to ensure good comfort in summer. At the same level of thermal comfort, it can also be found that the annual energy consumption of the radiant ceiling system is less than that of the radiant floor system.
基金Project(hx2013-87)supported by the Qingdao Economic and Technology Development Zone Haier Water-Heater Co.Ltd.,China
文摘In order to evaluate the heating performance of gas engine heat pump(GEHP) for air-conditioning and hot water supply, a test facility was developed and experiments were performed over a wide range of engine speed(1400-2600 r/min), ambient air temperature(2.4-17.8 ℃) and condenser water inlet temperature(30-50℃). The results show that as engine speed increases from 1400 r/min to 2600 r/min, the total heating capacity and energy consumption increase by about 30% and 89%, respectively; while the heat pump coefficient of performance(COP) and system primary energy ratio(PER) decrease by 44% and 31%, respectively. With the increase of ambient air temperature from 2.4 ℃ to 17.8 ℃, the heat pump COP and system PER increase by 32% and 19%, respectively. Moreover, the heat pump COP and system PER decrease by 27% and 15%, respectively, when the condenser water inlet temperature changes from 30 ℃ to 50 ℃. So, it is obvious that the effect of engine speed on the performance is more significant than the effects of ambient air temperature and condenser water inlet temperature.
文摘Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.
基金Supported bythe"11th Five-Year Plan"for National Plans of Major Technology Projects
文摘An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior. Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hot-water production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.
基金Project(2006BAJ03A06) supported by National Science and Technology Pillar Program During 11th Five-Year Plan
文摘A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.
基金supported by the National Key Research and Development Program of China(No.2016YFB0601602)National Natural Science Foundation of China(No.51676199)
文摘An air source heat pump(ASHP)with refrigerant injection is proposed for the air conditioning system of electric vehicles(EVs),especially for efficient heating in cold winter,when there is no wasted heat of engines.The simulation model is built with the framework of two-phase fluid network,where the compressor is separated as two compressors and the economizer is treated as two heat exchangers in the injection path and the main refrigerant path.With the validated simulation model,the heating performance is analyzed,and the results show that the coefficient of performance(COP)of ASHP with refrigerant injection is higher than 1.4 and the discharge temperature is less than 100℃ when the outdoor temperature is-20℃.The above performance ensures that the air conditioning system and EVs can operate normally with high efficiency even in the cold winter,which is much helpful for the practicability of EVs.
文摘The cooling and heating of spaces are among the largest sources for household’s energy demand. Ground Source Heat Pump (GSHP) is a promising technology to reduce the energy for cooling and heating purposes. However, the major obstacle hindering the utilization of this technology is the high initial cost, especially for the installation of ground coupled heat exchanger. The horizontal closed-loop system offers lower installation cost, as it requires no vertical borehole construction. Instead, the heat exchangers can be installed in shallow trenches that may be excavated, by small excavator or even by human labor. This paper presents the comparison of two different heat exchangers, namely, the capillary mat and the widely used slinky pipe. Both heat exchangers are connected to a heat pump, where continuous heating tests were carried out for 165 hours (~7 days) for each configuration. The purpose of this research is to show the performance of capillary mat in comparison to slinky pipe. Despite during the entire test for capillary mat required 6% higher electricity consumption, compared to slinky heat exchanger, the results still suggest the potential use of capillary mat as alternative to slinky heat exchanger. Additionally, the results also highlight the high hydraulic resistance of installed capillary mat heat exchangers may become the major disadvantage of the capillary mat.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(51825802).
文摘The electrification of building heating is an effective way to meet the global carbon target. As a clean and sustainable electrified heating technology, air-source heat pumps (ASHPs) are widely used in areas lacking central heating. However, as a major component of space heating, heating terminals might not fit well with ASHP in order to achieve both intermittency and comfort. Therefore, this study proposes a novel radiation-adjustable heating terminal combined with an ASHP to achieve electrification, intermittency, and better thermal comfort. Radiant terminals currently suffer from three major problems: limited maximum heating capacity, inability to freely adapt, and difficulty with combining them with ASHPs. These problems were solved by improving the structural design of the novel terminal (Improvement A–E). Results showed that the maximum heating capacity increased by 23.6% and radiation heat transfer ratio from 10.1% to 30.9% was provided for users with the novel terminal. Further, new flat heat pipe (FHP) design improved stability (compressor oil return), intermittency (refrigerant thermal inertia), and safety (refrigerant leakage risk) by reducing the length of exposed refrigerant pipes. Furthermore, a new phased operation strategy was proposed for the novel terminal, and the adjustability of the terminal was improved. The results can be used as reference information for decarbonizing buildings by electrifying heating terminals.
文摘To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance.
基金This research was funded by Development of the Healthy and Low-Carbon Residential House with Smart Home Environment Management System,Grant No.2019GSF110003Research on the energy efficiency and health performance improvement of building operations based on lifecycle carbon emissions reduction Grant No.2018YFE0106100.We gratefully acknowledge the help from ASSURAN International Scholarship Foundation.
文摘The building sector contributes a large ratio of final energy consumption,and improving building energy efficiency is expected to play a significant role in mitigating its carbon dioxide emission.Herein,we collected the on-site measurement data to investigate the techno-economic performances of different heat pump types that exist in building space heating projects in Qingdao,China.An in-depth analysis revealed the temperature variations of measured low-grade heat sources over the whole heating supply period,and urban sewage water shows high stable heat energy quality compared with seawater and geothermal heat resources.Operational behaviors including cycling inlet and outlet temperature of the selected heat pumps were illustrated,and analysis evaluated detailed effects of operational parameters on energy efficiency performances.Then the relationship between COPs distributions of heat pumps and operational conditions was examined further,and the positive effect of the rising temperature of heat sources on energy efficiency improvement of heat pump is highlighted when the heating supply temperature is higher.Furthermore,we analyzed the economic and carbon emission performance of the heat pump system,and results show that electricity price plays a vital role in the lifespan energy cost saving potential,and the heat pump could serve as a promising approach in reducing CO_(2) related to the building space heating.Finally,we recommended suggestions for improving the overall energy efficiency and cost competitiveness of decentralized heat pump systems for building space heating.
基金This work was supported by the National Key Research and Development Program of China(No.2019YFE0193200 KY202001)Science and Technology Planning Project of Beijing(No.Z201100008320001 KY191004).
文摘For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases.
文摘Preliminary investigation shows that air sourced type heat pumps by energy efficiency are competitive with gas boilers having 93% of coefficient of performance (COP) if heat pumps are used in climatic zones, having outside air temperature higher than (-3 ℃ to -5 ℃). But, in such conditions the heat pump's evaporator is covered by ice crust, which cuts off the flow of outside air-heat source through the evaporator of heat pump. For avoiding stating problems it is recommended to use as heat source a mixture of waste warm gases. In this article a high efficiency heating-cooling system is developed, consisting of warm gases mixture sourced heat pump, heating boiler operating simultaneously with heat pump and solar air heater. The heating demand of the served house is shared between boiler and heat pump. Instead of outside air the warm gases mixture enters into evaporator of heat pump. A new construction of heat exchanger was developed. The article presents the structure and principle of operation, as well as the method for optimization and design of suggested system. Analysis proved high energy efficiency and cost effectiveness of the new system.
文摘This paper presents the results of“Upgrade and Save”,a program to upgrade the standard electric furnaces and air-conditioning units in Mobile Homes for energy-efficient heat pumps.This program is implemented in North Caro-lina,USA and pays about$700 through a rebate provided by the North Carolina State Energy Office to the Mobile Homes’owners.The goal of this project is to subsidize low-income families by lowering their heating cost in the winter as well as improving their homes’indoor thermal comfort.More than 300 mobile homes have participated in this program.Field measurements,meter readings of the actual electrical consumption,and annual building energy simu-lation were used to measure the dollar saving and the indoor thermal comfort improvement in the mobile homes after the heating system upgrade.This research proved that the dollar saving of using the heat pump for heating in mobile homes ranges from$51 to$128 annually.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2008BAJ12B04)China Postdoctoral Science Foundation(No.20090461050)+1 种基金the Project of Researchand Development of Ministry of Housing and Urban-Rural Development ofChina(No.2008-K1-26)the New Century Talent Project of Yangzhou University for Excellent Young Backbone Teacher(2008)
文摘In order to investigate the alternate operation characteristics of a solar-ground source heat pump system(SGSHPS),various alternate operation modes are put forward and defined.A two-dimensional mathematical model with freezing/melting phase changes is developed for the heat transfer analysis of the soil.Based on the numerical solution of the model,the variation trends of underground soil temperature of the SGSHPS operated in various alternate operation modes are discussed.The results indicate that,for the day-night and short-time interval alternate operation modes without solar energy,the operation time fraction of a solar heat source should be confined to from 50% to 58% when operated in an alternate period of 24 h.Meanwhile,the disadvantages of a natural resumption of soil temperature can be overcome effectively by solar energy filling,and an optimal operation effect can be achieved by integrating the mode of solar energy filling with other alternate modes.In addition,the accuracy of the presented model is verified by the experimental data of borehole wall temperatures.The conclusions can provide a reference for the optimization operation of the SGSHPS.
基金Supported by Scientific Research Fund of Ningxia University [(E) ndzr09-23]
文摘The principle and development prospect of air source heat pump water heat were introduced,as well as the designation of condenser (storage water tank),experimental study on installations was also carried out.The results showed that air source heat pump water heater was superior to conventional system.Under the operation of cooling and heating,heat pump comprehensive utilization equipment could improve heating performance,reduce energy consumption,and recycle condensing heat to provide hot water.
基金The National Key Technology R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2008BAJ12B05-05)the Research Foundation of Education Bureau of Heilongjiang Province,China(No.11551114)the China Postdoctoral Science Foundation(No.20100471438).
文摘Aiming to resolve the problem that conventional sewage source heat pump systems cannot satisfy heat peak loads of buildings,a new idea that the freezing latent heat is exacted as the auxiliary heat source at the peak heat load is proposed.First,on the basis of sewage characteristics,a freezing latent heat exchanger is developed to safely eliminate ice,continuously extract heat and remove sewage soft-dirt.A reasonable form of the urban sewage source heat pump system with freezing latent heat collection is presented.Then,the feasibility of the system is theoretically analyzed.The calculation results under typical operating conditions show that the heating ability of the new system is higher than that of the conventional one and the ratio of these two highest heating rates is between 4.5 and 8.7,which proves that the new system has great application potential in cold regions.
基金The National Key Technologies R&D Program of Chinaduring the 11th Five-Year Plan Period(No.2006BAJ04B04,2006BAJ04A05,2006BAJ04A13)
文摘The performance of a direct-expansion ground-source heat pump(DX GSHP)system is theoretically analyzed.Compared with the conventional ground-source heat pump(GSHP),the DX GSHP has a lower condensing temperature in the cooling mode and a higher evaporating temperature in the heating mode,and the ground heat exchanger(GHE)in the DX GSHP has a low thermal resistance.Therefore,the coefficient of performance(COP)of the DX GSHP is higher than that of the GSHP.In addition,the system performance of the DX GSHP system is higher than that of the conventional GSHP system because there are no secondary solution loops and water circulating pumps in the DX GSHP system.The experimental energy performance of the DX GSHP system is also investigated based on the actual operational data.The tested DX GSHP system is installed in Xiangtan,China.The U-vertical GHE of the DX GSHP is buried in a water well.The length and the outside nominal diameter of the GHE are 42 m and 12.7 mm,respectively.The experimental results show that the maximum(COP)and the average COP of the DX GSHP system in the heating mode are 5.95 and 4.72,respectively.