Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biom...Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.展开更多
Small structures in coal mine working face is one of the main hidden dangers of safe and effi cient production in coal mine.Currently,seismic exploration is often used as the main method for detecting such structures....Small structures in coal mine working face is one of the main hidden dangers of safe and effi cient production in coal mine.Currently,seismic exploration is often used as the main method for detecting such structures.However,limited by the accuracy of seismic data processing and interpretation,the interpreted location of small structures is often deviated.Ground-penetrating radar(GPR)can detect small structures accurately,but the exploration depth is shallow.The combination of the two methods can improve the exploration accuracy of small structures in coal mine.Aiming at the 1226#working face of Shuguang coal mine,we propose a method of seismic-attributes based small-structure prediction error correction using GPR data.First,we extract the coherence,curvature,and dip attributes from seismic data,that are sensitive to small structures,then by considering factors such as the eff ective detection range of GPR and detection environment,we select two structures from the prediction results of seismic attributes for GPR detection.Finally,based on the relationship between the positions of small structures predicted by the two methods,we use statistical methods to determine the overall off set distance and azimuth of the small structures in the entire study area and use the results as a standard for correcting each structure position.The results show that the GPR data can be used to correct the horizontal position errors of small structures predicted by seismic attribute analysis.The accuracy of the prediction results is greatly improved,with the error controlled within 5 m and reduced by more than 80%.Therefore,the feasibility of the method proposed in this study is verified.展开更多
The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influ...The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.展开更多
The spatial distribution of plant populations is an important feature of population structure and it de- termines the population's ecological preferences, biological characteristics and relationships with environment...The spatial distribution of plant populations is an important feature of population structure and it de- termines the population's ecological preferences, biological characteristics and relationships with environmental factors. The point pattern analysis method was adopted to study the distribution pattern of Picea schrenkiana indi- viduals of different size classes and the correlations between two size classes as well as the impact of topog- raphical attributes on the population distribution. With increasing diameter at breast height, the plant density of the P. schrenkiana population showed a declining trend. Old trees showed a random distribution at a small spatial scale (0-12 m), whereas saplings, small trees and big trees all had an aggregated distribution at all scales. With the increase of tree age, the scales at which maximal aggregation occurred gradually increased and the aggregation strength decreased. At a small scale (0-16 m), all size classes showed a negative correlation and the larger the difference between tree size, the more significant the negative correlation. The number of medium, big and old trees had a significantly positive correlation with elevations, whereas the number of saplings and small trees was not significantly correlated with elevations. The numbers of saplings, small and medium trees showed a significant positive correlation with slope gradient, whereas the number of big trees was not significantly correlated, and the number of old trees was negatively correlated with gradient. With the exception of old trees, saplings, small, me- dium and big trees showed negative correlations with convexity index. The study provides a theoretical basis for the conservation, rehabilitation and sustainable management of forest ecosystems in the Tianshan Mountains.展开更多
In order to improve the quality of web search,a new query expansion method by choosing meaningful structure data from a domain database is proposed.It categories attributes into three different classes,named as concep...In order to improve the quality of web search,a new query expansion method by choosing meaningful structure data from a domain database is proposed.It categories attributes into three different classes,named as concept attribute,context attribute and meaningless attribute,according to their semantic features which are document frequency features and distinguishing capability features.It also defines the semantic relevance between two attributes when they have correlations in the database.Then it proposes trie-bitmap structure and pair pointer tables to implement efficient algorithms for discovering attribute semantic feature and detecting their semantic relevances.By using semantic attributes and their semantic relevances,expansion words can be generated and embedded into a vector space model with interpolation parameters.The experiments use an IMDB movie database and real texts collections to evaluate the proposed method by comparing its performance with a classical vector space model.The results show that the proposed method can improve text search efficiently and also improve both semantic features and semantic relevances with good separation capabilities.展开更多
In the seismic profile interpretation process,as the seismic data are big and the small geological features are difficult to identify,improvement of the efficiency is needed. In this study,structure tensor method in c...In the seismic profile interpretation process,as the seismic data are big and the small geological features are difficult to identify,improvement of the efficiency is needed. In this study,structure tensor method in computer image edge detection processing is applied into the 2D seismic profile. Coherent attribute is used to extract formation edge. At the same time,extracting the eigenvalues and eigenvectors to calculate the seismic geometric properties which include dip and apparent dip,automatic identification is achieved. Testing the Gaussian kernel function with synthetic models and comparing the coherent attribute and dip attribute extraction results before and after,the conclusion that Gaussian filter can remove the random noise is obtained.展开更多
Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these ...Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these mechanisms were poorly understood in the temperate forests of northeastern China, which prevented the development of new management methods aimed at increasing functional trait diversity and thus ecological resilience.Methods:In this study, we mapped functional diversity distributions using a Kriging Interpolation Method. A specific random forest model approach was adopted to test the importance ranking of 18 variables in explaining the spatial variation of functional diversity. Three piecewise structural equation models (pSEMs) with forest types as random effects were constructed for testing the direct effects of climate, and the indirect effects of stand structure on functional diversity across the large study region. Specific causal relationships in each forest type were also examined using 15 linear structural equation models.Results:Although environmental filtering by climate is important, stand structure explains most of the functional variation of the forest ecosystems in northeastern China. Our study thus only partially supports the stressdominance hypothesis. Several abundant species determine most of the functional diversity, which supports the mass ratio hypothesis.Conclusions:Our results suggest that forest management aimed at increasing structural complexity can contribute to increased functional diversity, especially regarding the mixing of coniferous and broad-leaved tree species.展开更多
Balkassar is an old field with considerable remaining potential. The 2d, 3d seismic and earlier vintages show that Balkassar is composed of two folds that impart heart shaped geometry. It appears likely the early Eoce...Balkassar is an old field with considerable remaining potential. The 2d, 3d seismic and earlier vintages show that Balkassar is composed of two folds that impart heart shaped geometry. It appears likely the early Eocene age Bhadrar formation may provide commercial production with lower water cuts from the eastern lobe (yet untapped) of the structure that may have at least 30 million barrels of unrecovered oil. Horizontal drilling may have promise as an optimum technique for recovery of oil from Paleogene reservoirs. Encouraging oil indications have also been recorded from the early Permian age tobra formation from Balkassar oxy-1 that was not tested by Oxy. Tobra sandstone reservoir can have a matrix porosity approaching 8%. When fractured recoveries from it can be relatively better than the Paleogene reservoirs. The 2D and 3D seismic acquisition has confirmed that the eastern lobe (yet untapped) of the Balkassar field is structurally higher and steeper than the Western lobe which has thus far produced over 30 million barrels. The Eastern lobe thus offers good potential for recovery of oil from the Bhadrar reservoir. The entire field is likely to have potential for recovery of oil from the early Eocene aged Tobra formation. 2-d and 3-D Seismic data interpretation, attribute analysis and visualization for deeper prospect carried in Balksasar field. Tobra and Khewra formation studied for deeper potential drilling. Time contour and depth contour map shows potential for deeper prospects. Also attribute analysis and 3d visualization show good results for deeper potential of Tobra and Khewar formations. Seismic amplitude, Reflection strength, Apparent polarity attribute are visualized and interpreted to find the potential for Tobra and Khewra formation. 3-D visualization also showed positive results for Tobra and Khewra formations.展开更多
Transport infrastructure development and perception vary across and within countries, influencing mode choice among road users. This study explores how road users perceive the development of infrastructure modes, serv...Transport infrastructure development and perception vary across and within countries, influencing mode choice among road users. This study explores how road users perceive the development of infrastructure modes, service attributes, embedded safety levels, and commuting modes. Additionally, the research examines whether participants’ environmental backgrounds impact their mode choice patterns. The study gathered responses from 1169 participants residing in two regions of Amman, Jordan, each with distinct infrastructure development and population densities. Participants completed a standardized questionnaire, and several statistical techniques were employed for analysis. The findings revealed that facilities’ infrastructure attributes, development, and safety were assessed using three indices. Both participant groups perceived these indices differently on average. Residents of low population density areas with relatively developed infrastructure showed more consistent assessments, irrespective of their most frequently used mode of transportation, tending towards lower scores. Interestingly, subjective ratings of infrastructure development were higher (4.96) than attribute-based ratings (4.32). Despite their generally low-quality perception, public transportation services received the highest appraisal (4.9). Conversely, pedestrian infrastructure complementing public transport received the lowest assessment (4.57), only slightly higher than street environments (4.59). The study found weak associations between subjective service characteristics ratings. Traveler and trip characteristics influenced mode choice and trips more than infrastructure perception. In conclusion, the study suggests that policies should be developed to encourage green transportation, ensure social equality and safety. In addition, the study contributes to understanding perceptions about transport infrastructure, modes of transportation, and the factors that influence sustainable and equitable transportation systems.展开更多
聚类分析针对不同的数据特点采用不同的相似性度量,现实世界中数据分布复杂,存在分布无规律、密度不均匀等现象,单独考虑实例属性相似性或分布结构连通性会影响聚类效果。为此,提出了一种基于属性相似性和分布结构连通性的聚类算法(A Cl...聚类分析针对不同的数据特点采用不同的相似性度量,现实世界中数据分布复杂,存在分布无规律、密度不均匀等现象,单独考虑实例属性相似性或分布结构连通性会影响聚类效果。为此,提出了一种基于属性相似性和分布结构连通性的聚类算法(A Clustering Algorithm Based on Attribute Similarity and Distributed Structure Connectivity, ASDSC)。首先,利用待聚类数据集中的所有数据实例构建完全无向图,定义了一种兼顾属性相似和分布结构连通的新颖相似性度量方式,用于计算节点相似性,并构造邻接矩阵更新边的权重;其次,借助邻接矩阵执行递增步长的随机游走,依据顶点的连通中心性来识别簇中心并给定簇编号,同时获取其他顶点的连通性;然后,利用连通性计算顶点间的依赖关系,并据此进行簇编号的传播,直至完成聚类。最后,为了验证该方法的聚类性能,在16个合成数据集和10个真实数据集上与5种先进聚类算法进行了对比实验,ASDSC算法取得了优异性能。展开更多
Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and he...Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer's(1967)volume equation.When density was included in the models(Volume=f(Diameter,Height,Density))choice of diameter measure was more important than choice of height measure.When density was not included(Volume=f(Diameter,Height)),the opposite was true.For models with density included,moment-based estimators of stand diameter and height performed better than all other measures.For models without density,largest tree estimators of stand diameter and height performed better than other measures.The overall best equation used quadratic mean diameter,Lorey's height,and density(root mean square error=5.26 m^3·ha^(-1);1.9%relative error).The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha(root mean square error=32.08 m^(3)·ha^(-1);11.8%relative error).The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.展开更多
基金supported by the Guangxi Key R&D Program (project No. AB16380254)a research project of Guangxi Forestry Department (Guilinkezi [2015] No.5)supported a grant for Bagui Senior Fellow (C33600992001)。
文摘Forests,the largest terrestrial carbon sinks,play an important role in carbon sequestration and climate change mitigation.Although forest attributes and environmental factors have been shown to impact aboveground biomass,their influence on biomass stocks in species-rich forests in southern China,a biodiversity hotspot,has rarely been investigated.In this study,we characterized the effects of environmental factors,forest structure,and species diversity on aboveground biomass stocks of 30 plots(1 ha each) in natural forests located within seven nature reserves distributed across subtropical and marginal tropical zones in Guangxi,China.Our results indicate that forest aboveground biomass stocks in this region are lower than those in mature tropical and subtropical forests in other regions.Furthermore,we found that aboveground biomass was positively correlated with stand age,mean annual precipitation,elevation,structural attributes and species richness,although not with species evenness.When we compared stands with the same basal area,we found that aboveground biomass stock was higher in communities with a higher coefficient of variation of diameter at breast height.These findings highlight the importance of maintaining forest structural diversity and species richness to promote aboveground biomass accumulation and reveal the potential impacts of precipitation changes resulting from climate warming on the ecosystem services of subtropical and northern tropical forests in China.Notably,many natural forests in southern China are not fully stocked.Therefore,their continued growth will increase their carbon storage over time.
基金This study work is supported by the Directly Managed Scientifi c Research Project of Huainan Mining(Group)Co.Ltd.(No.HNKYJTJS(2018)181),the Major Project of Shaanxi Coal and Chemical Industry Group Co.Ltd.(No.2018SMHKJ-A-J-03),China Energy Investment Corporation 2030 Pilot Project(No.GJNY2030XDXM-19-03.2),State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(Beijing).I also would like to thank the editorial department and the review experts for their valuable comments and suggestions,and thank the Compagnie Générale de Géophysique(CGG)for the Jason software support.
文摘Small structures in coal mine working face is one of the main hidden dangers of safe and effi cient production in coal mine.Currently,seismic exploration is often used as the main method for detecting such structures.However,limited by the accuracy of seismic data processing and interpretation,the interpreted location of small structures is often deviated.Ground-penetrating radar(GPR)can detect small structures accurately,but the exploration depth is shallow.The combination of the two methods can improve the exploration accuracy of small structures in coal mine.Aiming at the 1226#working face of Shuguang coal mine,we propose a method of seismic-attributes based small-structure prediction error correction using GPR data.First,we extract the coherence,curvature,and dip attributes from seismic data,that are sensitive to small structures,then by considering factors such as the eff ective detection range of GPR and detection environment,we select two structures from the prediction results of seismic attributes for GPR detection.Finally,based on the relationship between the positions of small structures predicted by the two methods,we use statistical methods to determine the overall off set distance and azimuth of the small structures in the entire study area and use the results as a standard for correcting each structure position.The results show that the GPR data can be used to correct the horizontal position errors of small structures predicted by seismic attribute analysis.The accuracy of the prediction results is greatly improved,with the error controlled within 5 m and reduced by more than 80%.Therefore,the feasibility of the method proposed in this study is verified.
基金Supported by the National Natural Science Foundation of China(U19B6003-01).
文摘The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention.
基金funded by the 12th Five-year Science and Technology Support Program(2011BAD38B0505)the Forestry Industry Research Special Funds for Public Welfare Projects (200804022C)the CFERN & GENE Award Funds on Ecological Papers
文摘The spatial distribution of plant populations is an important feature of population structure and it de- termines the population's ecological preferences, biological characteristics and relationships with environmental factors. The point pattern analysis method was adopted to study the distribution pattern of Picea schrenkiana indi- viduals of different size classes and the correlations between two size classes as well as the impact of topog- raphical attributes on the population distribution. With increasing diameter at breast height, the plant density of the P. schrenkiana population showed a declining trend. Old trees showed a random distribution at a small spatial scale (0-12 m), whereas saplings, small trees and big trees all had an aggregated distribution at all scales. With the increase of tree age, the scales at which maximal aggregation occurred gradually increased and the aggregation strength decreased. At a small scale (0-16 m), all size classes showed a negative correlation and the larger the difference between tree size, the more significant the negative correlation. The number of medium, big and old trees had a significantly positive correlation with elevations, whereas the number of saplings and small trees was not significantly correlated with elevations. The numbers of saplings, small and medium trees showed a significant positive correlation with slope gradient, whereas the number of big trees was not significantly correlated, and the number of old trees was negatively correlated with gradient. With the exception of old trees, saplings, small, me- dium and big trees showed negative correlations with convexity index. The study provides a theoretical basis for the conservation, rehabilitation and sustainable management of forest ecosystems in the Tianshan Mountains.
基金Program for New Century Excellent Talents in University(No.NCET-06-0290)the National Natural Science Foundation of China(No.60503036)the Fok Ying Tong Education Foundation Award(No.104027)
文摘In order to improve the quality of web search,a new query expansion method by choosing meaningful structure data from a domain database is proposed.It categories attributes into three different classes,named as concept attribute,context attribute and meaningless attribute,according to their semantic features which are document frequency features and distinguishing capability features.It also defines the semantic relevance between two attributes when they have correlations in the database.Then it proposes trie-bitmap structure and pair pointer tables to implement efficient algorithms for discovering attribute semantic feature and detecting their semantic relevances.By using semantic attributes and their semantic relevances,expansion words can be generated and embedded into a vector space model with interpolation parameters.The experiments use an IMDB movie database and real texts collections to evaluate the proposed method by comparing its performance with a classical vector space model.The results show that the proposed method can improve text search efficiently and also improve both semantic features and semantic relevances with good separation capabilities.
基金Support by National Natural Science Foundation of China(No.41274120)
文摘In the seismic profile interpretation process,as the seismic data are big and the small geological features are difficult to identify,improvement of the efficiency is needed. In this study,structure tensor method in computer image edge detection processing is applied into the 2D seismic profile. Coherent attribute is used to extract formation edge. At the same time,extracting the eigenvalues and eigenvectors to calculate the seismic geometric properties which include dip and apparent dip,automatic identification is achieved. Testing the Gaussian kernel function with synthetic models and comparing the coherent attribute and dip attribute extraction results before and after,the conclusion that Gaussian filter can remove the random noise is obtained.
基金supported by the Program of National Natural Science Foundation of China (No. 31971650)the Key Project of National Key Research and Development Plan (No. 2017YFC0504104)Beijing Forestry University Outstanding Young Talent Cultivation Project(No. 2019JQ03001)
文摘Background:Assessing functional diversity to identify its spatial patterns and drivers is an important step towards understanding the adaptive capacity of ecosystems to environmental change. However, until now, these mechanisms were poorly understood in the temperate forests of northeastern China, which prevented the development of new management methods aimed at increasing functional trait diversity and thus ecological resilience.Methods:In this study, we mapped functional diversity distributions using a Kriging Interpolation Method. A specific random forest model approach was adopted to test the importance ranking of 18 variables in explaining the spatial variation of functional diversity. Three piecewise structural equation models (pSEMs) with forest types as random effects were constructed for testing the direct effects of climate, and the indirect effects of stand structure on functional diversity across the large study region. Specific causal relationships in each forest type were also examined using 15 linear structural equation models.Results:Although environmental filtering by climate is important, stand structure explains most of the functional variation of the forest ecosystems in northeastern China. Our study thus only partially supports the stressdominance hypothesis. Several abundant species determine most of the functional diversity, which supports the mass ratio hypothesis.Conclusions:Our results suggest that forest management aimed at increasing structural complexity can contribute to increased functional diversity, especially regarding the mixing of coniferous and broad-leaved tree species.
文摘Balkassar is an old field with considerable remaining potential. The 2d, 3d seismic and earlier vintages show that Balkassar is composed of two folds that impart heart shaped geometry. It appears likely the early Eocene age Bhadrar formation may provide commercial production with lower water cuts from the eastern lobe (yet untapped) of the structure that may have at least 30 million barrels of unrecovered oil. Horizontal drilling may have promise as an optimum technique for recovery of oil from Paleogene reservoirs. Encouraging oil indications have also been recorded from the early Permian age tobra formation from Balkassar oxy-1 that was not tested by Oxy. Tobra sandstone reservoir can have a matrix porosity approaching 8%. When fractured recoveries from it can be relatively better than the Paleogene reservoirs. The 2D and 3D seismic acquisition has confirmed that the eastern lobe (yet untapped) of the Balkassar field is structurally higher and steeper than the Western lobe which has thus far produced over 30 million barrels. The Eastern lobe thus offers good potential for recovery of oil from the Bhadrar reservoir. The entire field is likely to have potential for recovery of oil from the early Eocene aged Tobra formation. 2-d and 3-D Seismic data interpretation, attribute analysis and visualization for deeper prospect carried in Balksasar field. Tobra and Khewra formation studied for deeper potential drilling. Time contour and depth contour map shows potential for deeper prospects. Also attribute analysis and 3d visualization show good results for deeper potential of Tobra and Khewar formations. Seismic amplitude, Reflection strength, Apparent polarity attribute are visualized and interpreted to find the potential for Tobra and Khewra formation. 3-D visualization also showed positive results for Tobra and Khewra formations.
文摘Transport infrastructure development and perception vary across and within countries, influencing mode choice among road users. This study explores how road users perceive the development of infrastructure modes, service attributes, embedded safety levels, and commuting modes. Additionally, the research examines whether participants’ environmental backgrounds impact their mode choice patterns. The study gathered responses from 1169 participants residing in two regions of Amman, Jordan, each with distinct infrastructure development and population densities. Participants completed a standardized questionnaire, and several statistical techniques were employed for analysis. The findings revealed that facilities’ infrastructure attributes, development, and safety were assessed using three indices. Both participant groups perceived these indices differently on average. Residents of low population density areas with relatively developed infrastructure showed more consistent assessments, irrespective of their most frequently used mode of transportation, tending towards lower scores. Interestingly, subjective ratings of infrastructure development were higher (4.96) than attribute-based ratings (4.32). Despite their generally low-quality perception, public transportation services received the highest appraisal (4.9). Conversely, pedestrian infrastructure complementing public transport received the lowest assessment (4.57), only slightly higher than street environments (4.59). The study found weak associations between subjective service characteristics ratings. Traveler and trip characteristics influenced mode choice and trips more than infrastructure perception. In conclusion, the study suggests that policies should be developed to encourage green transportation, ensure social equality and safety. In addition, the study contributes to understanding perceptions about transport infrastructure, modes of transportation, and the factors that influence sustainable and equitable transportation systems.
文摘聚类分析针对不同的数据特点采用不同的相似性度量,现实世界中数据分布复杂,存在分布无规律、密度不均匀等现象,单独考虑实例属性相似性或分布结构连通性会影响聚类效果。为此,提出了一种基于属性相似性和分布结构连通性的聚类算法(A Clustering Algorithm Based on Attribute Similarity and Distributed Structure Connectivity, ASDSC)。首先,利用待聚类数据集中的所有数据实例构建完全无向图,定义了一种兼顾属性相似和分布结构连通的新颖相似性度量方式,用于计算节点相似性,并构造邻接矩阵更新边的权重;其次,借助邻接矩阵执行递增步长的随机游走,依据顶点的连通中心性来识别簇中心并给定簇编号,同时获取其他顶点的连通性;然后,利用连通性计算顶点间的依赖关系,并据此进行簇编号的传播,直至完成聚类。最后,为了验证该方法的聚类性能,在16个合成数据集和10个真实数据集上与5种先进聚类算法进行了对比实验,ASDSC算法取得了优异性能。
基金the Natural Sciences and Engineering Research Council of Canada(Discovery Grant RGPIN-2023-05879)the New Brunswick Innovation Foundation(Emerging Projects Grant EP-0000000033)。
文摘Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer's(1967)volume equation.When density was included in the models(Volume=f(Diameter,Height,Density))choice of diameter measure was more important than choice of height measure.When density was not included(Volume=f(Diameter,Height)),the opposite was true.For models with density included,moment-based estimators of stand diameter and height performed better than all other measures.For models without density,largest tree estimators of stand diameter and height performed better than other measures.The overall best equation used quadratic mean diameter,Lorey's height,and density(root mean square error=5.26 m^3·ha^(-1);1.9%relative error).The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha(root mean square error=32.08 m^(3)·ha^(-1);11.8%relative error).The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.