In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Base...In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.展开更多
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from ...Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.展开更多
A rapid, cost effective and reliable analytical method was developed and validated for the simultaneous determination of four estrogens (17 β-estradiol, 17 α-ethinylestradiol, estrone, and estriol) in compost sample...A rapid, cost effective and reliable analytical method was developed and validated for the simultaneous determination of four estrogens (17 β-estradiol, 17 α-ethinylestradiol, estrone, and estriol) in compost samples from the biodegradation of biological infectious hazardous wastes. Ultrasonic solvent extraction, using methanol as extraction solvent, coupled with SPE clean-up, using cartridges HLB 60 mg - 6 ml Supelco®<sup></sup> and acetonitrile for reconstitution of eluents, was used for the simultaneous extraction of the four estrogens. Mean recoveries in the range of 98% - 107% were obtained. All compounds were separated in a single gradient run by UHPLC Kinetex<sup>TM</sup> 2.6 μm XB-C18 100 ÅLC (50 × 4.6 mm) column. Analytes were detected via multiple reaction monitoring (MRM) using an AB SCIEX API-5000TM triple quadrupole (Applied Biosystems/MDS SCIEX) with electrospray ionization in negative mode. Isocratic mobile phase of Water:ACN (50:50) resulted to be the optimum. Limits of detection and quantification were on the order of 0.66 ng·g<sup>-1</sup> and 2 ng·g<sup>-1</sup> for all the estrogens. These limits were lower than most of the values reported in the literature for similar matrices. Suitable level of linearity, good repeatability and reproducibility with coefficients of variation is lower than 11.7%, 6.8% and 8.3%, respectively.展开更多
A new gas clean-up process called 'integrated sintered metal screen moving granular bed' (ISMSMGB) for the integrated gasification combined cycle (IGCC) and pressured fluidized bed combustion (PFBC) was develo...A new gas clean-up process called 'integrated sintered metal screen moving granular bed' (ISMSMGB) for the integrated gasification combined cycle (IGCC) and pressured fluidized bed combustion (PFBC) was developed on the basis of a sintered metal candle filter and a cross-flow moving granular bed filter. This is a combination of the surface and deep bed filtering processes. A set of facilities was established and a series of cold model tests were carried out. The dust removal efficiency and the pressure drop of the filter were measured and analyzed. The results show that this process features the advantages of the moving bed for high capacity as well as high inlet dust load and the surface filter for high efficiency. Meanwhile, the granules moving downward cleans the cake on the screen surface, so that the system is operated at steady state.展开更多
Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be ...Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification.展开更多
In this paper, a new method of topological cleanup for quadrilateral mesh is presented. The method first selects a patch of mesh around an irregular node. It then seeks the best connection of the selected patch accord...In this paper, a new method of topological cleanup for quadrilateral mesh is presented. The method first selects a patch of mesh around an irregular node. It then seeks the best connection of the selected patch according to its irregular valence using a new topological operation: small polygon reconnection (SPR). By replacing the original patch with an optimal one that has less irregular valence, mesh quality can be improved. Three applications based on the proposed approach are enumerated: (1) improving the quality of a quadrilateral mesh, (2) converting a triangular mesh to a quadrilateral one, and (3) adapting a triangle generator to a quadrilateral one. The presented method is highly effective in all three applications.展开更多
Although electrohydraulic discharge is effective for wastewater treatment,its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatme...Although electrohydraulic discharge is effective for wastewater treatment,its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment,water-surface discharge is the preferred choice.However. the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water.As a result. the efficiency of the water treatment might be affected and the service life of the reactor might be shortened.In order to avoid the corrosion problem,nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study.Carbon-felt and water were used as the high voltage electrode and ground electrode,respectively.A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency,and furthermore,the corrosion of metal electrodes was avoided.展开更多
Medical wastes have been implicated in river pollution in developing countries and most often people depend on water from such rivers for sources of livelihood. Phthalates (endocrine disruptors) are major components i...Medical wastes have been implicated in river pollution in developing countries and most often people depend on water from such rivers for sources of livelihood. Phthalates (endocrine disruptors) are major components in medical wastes and are commonly found contaminants in aquatic environment. Most sewage treatment facilities handling medical waste are inefficient due to overuse and poor maintenance and discharge directly into rivers. This study aimed to investigate the identity and estimates the concentration of phthalates in supposed treated medical wastes from a hospital sewer and water from a receiving river. Samples were randomly collected before and after treatment by the sewer plants, while samples were randomly collected along the course of the river starting from point of discharge. Control samples were taken from upstream about 500 m along the river course. The samples were extracted by liquid-liquid chroma- tographic process using dichloromethane, after which they were cleaned up in a column of silica gel using hexane as the mobile solvent. The cleaned extracts were analyzed by HPLC. The concentrations (μg/L) of dimethyl-, diethyl-, diphenyl-, dibutyl- and di-(2-ethyl)hexyl phthalates ranged from 62.81 ± 18.53;4.74 ± 3.57;2.05 ± 1.80;11.40 ± 5.58 to 141.92 ± 35.8 respectively in the sewer waste. The receiving river had a concentration (μg/L) of 9.17 ± 14.02;0.18 ± 0.31;0.48 ± 0.84;2.84 ± 1.21;61.72 ± 38.35 respectively for dimethyl-, diethyl-, diphenyl-, dibutyl- and di-(2-ethyl) hexyl phthalates. These concentrations were higher than control and far exceeded the USEPA limits of 3 μg/l recom- mended for phthalates in water. Contaminants of aquatic environment by untreated wastes from hospitals has serious implications on public health and environment as human risks for phthalate esters downstream are high and this calls for urgent need to develop strategy to build incentives for compliance in treatment and discharge of wastes into river waters.展开更多
The composite sorbent, including an active inorganic component (alumosilicates derived from clay-salt slimes) in the quantity of more than 80 mas.% and the polymer binder (polyacrylamide) was obtained. The influen...The composite sorbent, including an active inorganic component (alumosilicates derived from clay-salt slimes) in the quantity of more than 80 mas.% and the polymer binder (polyacrylamide) was obtained. The influences of various factors on its sorption and mechanical properties were studied. It is established that the content of polyacrylamide in the composite sorbent should be in the range of 10-15 mas.%. It is shown that quasi-equilibrium of ^137Cs in the system "sorbent-solution" is reached within 80 rain. The distribution coefficient (Kd) is 2.4× 10^4 cm^3/g. The obtained data of kinetic parameters (diffusion coefficient and sorption during half-time) show that the received sorbent can be referred to sorbents with high rate of ^137Cs sorption.展开更多
The study assesses the spatial distribution and sources of mercury contamination in the Ankobra River Basin in southwestern Ghana and discusses possible remediation options and challenges. Eighty-two (82) samples of w...The study assesses the spatial distribution and sources of mercury contamination in the Ankobra River Basin in southwestern Ghana and discusses possible remediation options and challenges. Eighty-two (82) samples of water and streambed sediments from areas of active and historic artisanal mining and historic mine spoil from large-scale mining were analysed for their total mercury content using cold vapour Atomic Fluorescence Spectrometry (CV-AAS). The highest Hg concentrations were recorded from historic mine tailings, legacy of large scale mines in the area, which averaged 795 ppb but ranged from 80 ppb to 2500 ppb. Concentrations in streambed sediments averaged 139 ppb, but ranged from 63 ppb to 270 ppb. Water, expectedly, gave the lowest Hg concentrations with a mean value of 1.5 ppb, but ranged from below detection to 8 ppb. Areas worked by artisanal miners and historic tailings dumps at Bondaye and Prestea recorded the highest mercury values. These high mercury concentration sites constitute potential sources of major mercury pollution in the area and therefore require major and urgent clean up to mitigate any major health risks. However, any remediation strategy would require further and detailed study of the contaminated sites and an evaluation of known remediation techniques to achieve maximum results.展开更多
In this paper,we design a farm machine integrating the functions of chopping field straw,pressing field straw into soil,breaking stubble,and cleaning up plastic film,in order to improve the efficiency of plastic film ...In this paper,we design a farm machine integrating the functions of chopping field straw,pressing field straw into soil,breaking stubble,and cleaning up plastic film,in order to improve the efficiency of plastic film cleaning,enrich the function of straw chopping equipment,reduce the noise generated at work,and further realize the intelligent harmony. The remote control button is used to control the work of the entire system,and the bluetooth remote control module and matrix keyboard are used to control the vehicle. With STM32 microcontroller as the main control chip,the machine controls the motion of the electric motor by relay,and employs LCD screen to realize real-time display of system work. It is convenient and easy to operate,with good human-computer interaction.展开更多
Based on differential game theory,the decision-making problem of two homogeneous countries facing transboundary marine litter governance is studied.On the basis of assuming that the input of marine litter is an exogen...Based on differential game theory,the decision-making problem of two homogeneous countries facing transboundary marine litter governance is studied.On the basis of assuming that the input of marine litter is an exogenous variable,the focus is on reducing the accumulation of marine litter through cleanup and transfer processing by both parties.Considering the constant and increasing input of marine litter,in the framework of international agreement constraints,the analysis of the game behavior of the players in the marine litter governance under the open-loop strategy(in the case of agreement constraints)and the Markov strategy(in the case of no agreement constraints)was compared and analyzed.The research results show that when the direct pollution cost of marine litter is high enough,both sides of the game adopt an open-loop strategy that complies with the constraints of the agreement,which can reduce the accumulation of marine litter and improve the environmental quality.However,when there is a high initial accumulation of marine litter,the Markov strategy without protocol constraints will be better than the open-loop strategy.In the case that marine litter does not need to be transferred,there will be no difference between the two sides of the game adopting the Markov strategy and adopting the open-loop strategy on the equilibrium growth path.展开更多
With financial assistance from the US Department of Energy and the Illinois Clean Coal Institute, Gas Technology Institute (GTI) has been working with the University of California, Berkeley, for further development of...With financial assistance from the US Department of Energy and the Illinois Clean Coal Institute, Gas Technology Institute (GTI) has been working with the University of California, Berkeley, for further development of their UCSRP-HP (University of California Sulfur Recovery Process-High Pressure) technology. The key focus of the UCSRP-HP technology is integrated multi-contaminant removal of hydrogen sulfide (H2S), carbonyl sulfide (COS), ammonia (NH3), chlorides and heavy metals present in coal-derived syngas. The process has two major components: 1) removal of various trace components with a solvent (e.g., diethylene glycol or water) using a high-pressure scrubbing unit and 2) removal of H2S as sulfur via reaction with SO2 (in the presence of a solvent mixed a small quantity of a homogeneous catalyst) at 120?C to 150?C and at any syngas pressure. During this research, data critical to developing and evaluating UCSRP-HP technology for multi-contaminant removal from syngas derived from Illinois #6 coal were obtained. In this paper, we have presented key economic evaluations of the UCSRP-HP process, including potential integrations with other technology options for CO2 and hydrogen separations, for a nominal Illinois #6-coal-based 550-MWe Integrated Coal Gasification Combined Cycle (IGCC) facility with CO2 capture and sequestration. GTI is exploring various options to demonstrate this technology in a pilot plant using actual syngas from a coal gasifier.展开更多
Machining quality of clean-up region has a strong influence on the performances of the impeller. In order to plan clean-up tool paths rapidly and obtain good finish surface quality, an efficient and robust tool path g...Machining quality of clean-up region has a strong influence on the performances of the impeller. In order to plan clean-up tool paths rapidly and obtain good finish surface quality, an efficient and robust tool path generation method is presented, which employs an approach based on point-searching. The clean-up machining mentioned in this paper is pencil-cut and multilayer fillet-cut for a free-form model with a ball-end cutter. For pencil-cut, the cutter center position can be determined via judging whether it satisfies the distance requirement. After the searching direction and the tracing direction have been determined, by employing the point-searching algorithm with the idea of dichotomy, all the cutter contact (CC) points and cutter location (CL) points can be found and the clean-up boundaries can also be defined rapidly. Then the tool path is generated. Based on the main concept of pencil-cut, a multilayer fillet-cut method is proposed, which utilizes a ball-end cutter with its radius less than the design radius of clean-up region. Using a sequence of intermediate virtual cutters to divide the clean-up region into several layers and given a cusp-height tolerance for the final layer, then the tool paths for all layers are calculated. Finally, computer implementation is also presented in this paper, and the result shows that the proposed method is feasible.展开更多
We demonstrate a novel approach to achieve wavelength-tunable ultrashort pulses from an all-fiber mode-locked laser with a saturable absorber based on the nonlinear Kerr beam clean-up effect.This saturable absorber wa...We demonstrate a novel approach to achieve wavelength-tunable ultrashort pulses from an all-fiber mode-locked laser with a saturable absorber based on the nonlinear Kerr beam clean-up effect.This saturable absorber was formed by a single-mode fiber spliced to a graded-index multimode fiber,and its tunable band-pass filter effect is described by a numerical model.By adjusting the bending condition of the graded-index multimode fiber,the laser could produce dissipative soliton pulses with their central wavelength tunable from 1040 nm to 1063 nm.The pulse duration of the output laser could be compressed externally to 791 fs,and the signal to noise ratio of its radio frequency spectrum was measured to be 75.5 dB.展开更多
The existence of liquid water was found very important in incineration flue gas clean-up systems for enhancing the absorption of acid components contained. In a newly developed incineration flue gas clean-up tower, wh...The existence of liquid water was found very important in incineration flue gas clean-up systems for enhancing the absorption of acid components contained. In a newly developed incineration flue gas clean-up tower, which works in a semi-dry mode, the water is injected in the form of spray to maximum its contact surface with the gas. The criteria for the design of the water nozzles would be nigh water concentration but no liquid impinging on the solid wall and complete evaporation inside the tower. In order to optimize the atomizer design, the effects of the spray type (hollow or solid cone), their initial droplet she distribution and water flow rate on the performance of the acid gas absorption were investigated. The liquid behaviour was studied with a fluid dynamic simulation code, and the overall performance was checked experimentally. This paper presents the use of a commercial CFD code, FLUENT, and some modifications made during such investigation. The modification includes the viscosity of the flue gas defined as a function of the temperature, and the initial mass fraction of different droplet size group described with an exponential distribution formula of Rosin-Rammler. The investigation results (the optimal spray parameters) were used to guide the water nozzle design. The general performance of the flue gas clean-up system measured during the plant operation complied with the design criteria.展开更多
Designing highly porous materials is of great importance for liquid separation,water purification,and disinfection,such as spill oil cleaning and recycling,seawater desalting,and oil/water separation.However,a remaini...Designing highly porous materials is of great importance for liquid separation,water purification,and disinfection,such as spill oil cleaning and recycling,seawater desalting,and oil/water separation.However,a remaining challenge is to produce porous materials with the characteristics of fast absorption,continuous directional transport,and self-release of viscous liquid.Herein,a functional cellulosic composite is reported by the chemical treatment and functionalization of wood resulting in a smart wood that can thermally selfrelease and separate high viscosity oil.The smart wood has a high absorption speed of 1398 mL/(m_(2)·s)(ethylene glycol)and a maximum absorption capacity of 47.2 g/g(chloroform)due to its intrinsic vertical micro/nanoscale channel structure,low tortuosity,and high porosity.Moreover,the switchable wettability is achieved by the surface coating of poly(N-isopropylacrylamide)on the porous wood,which enables the collection and removal of oil from the oil/water mixture.The high viscosity oil can be automatically released due to the passive oil release at room temperature.The release capacity of the smart wood remains above 91%after 15 cyclic tests.We envision that this functional smart wood could be extended to a wide range of applications in smart hydrogels,microfluidics,artificial drug release,and environmental restoration.展开更多
The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and war...The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.展开更多
文摘In this paper, the discussion is concentrated on the properties of the polluted sediments and the combination of clean-up and disposal process for the upper layer heavily polluted sediments with good flowability. Based on the systematic analyses of various clean-up processes, a suitable engineering process has been evaluated and recommended. The process has been applied to the river reclamation in Yangpu District of Shanghai City, China. An improved centrifuge is used for dewatering the dredged sludge, which plays an important role in the combination of clean-up and disposal process. The assessment of the engineering process shows its environmental and technical economy feasibility, which is much better than that of traditional dredging-disposal processes.
基金the Ministry of Science and Technology of China under the Grant No. G2005CB221203the Natural Science Foundation of China under Contract No. 20576087.
文摘Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.
文摘A rapid, cost effective and reliable analytical method was developed and validated for the simultaneous determination of four estrogens (17 β-estradiol, 17 α-ethinylestradiol, estrone, and estriol) in compost samples from the biodegradation of biological infectious hazardous wastes. Ultrasonic solvent extraction, using methanol as extraction solvent, coupled with SPE clean-up, using cartridges HLB 60 mg - 6 ml Supelco®<sup></sup> and acetonitrile for reconstitution of eluents, was used for the simultaneous extraction of the four estrogens. Mean recoveries in the range of 98% - 107% were obtained. All compounds were separated in a single gradient run by UHPLC Kinetex<sup>TM</sup> 2.6 μm XB-C18 100 ÅLC (50 × 4.6 mm) column. Analytes were detected via multiple reaction monitoring (MRM) using an AB SCIEX API-5000TM triple quadrupole (Applied Biosystems/MDS SCIEX) with electrospray ionization in negative mode. Isocratic mobile phase of Water:ACN (50:50) resulted to be the optimum. Limits of detection and quantification were on the order of 0.66 ng·g<sup>-1</sup> and 2 ng·g<sup>-1</sup> for all the estrogens. These limits were lower than most of the values reported in the literature for similar matrices. Suitable level of linearity, good repeatability and reproducibility with coefficients of variation is lower than 11.7%, 6.8% and 8.3%, respectively.
基金Chinese Special Funds for Major State Basic Research Projects 973 (No. G1999022104).
文摘A new gas clean-up process called 'integrated sintered metal screen moving granular bed' (ISMSMGB) for the integrated gasification combined cycle (IGCC) and pressured fluidized bed combustion (PFBC) was developed on the basis of a sintered metal candle filter and a cross-flow moving granular bed filter. This is a combination of the surface and deep bed filtering processes. A set of facilities was established and a series of cold model tests were carried out. The dust removal efficiency and the pressure drop of the filter were measured and analyzed. The results show that this process features the advantages of the moving bed for high capacity as well as high inlet dust load and the surface filter for high efficiency. Meanwhile, the granules moving downward cleans the cake on the screen surface, so that the system is operated at steady state.
基金financed by Shanxi Province Science and Technology Major Projects of MH2015-06
文摘Elevated-temperature pressure swing adsorption is a promising technique for producing high purity hydrogen and controlling greenhouse gas emissions. Thermodynamic analysis indicated that the CO in H-rich gas could be controlled to trace levels of below 10 ppm by in situ reduction of the COconcentration to less than 100 ppm via the aforementioned process. The COadsorption capacity of potassiumpromoted hydrotalcite at elevated temperatures under different adsorption(mole fraction, working pressure) and desorption(flow rate, desorption time, steam effects) conditions was systematically investigated using a fixed bed reactor. It was found that the COresidual concentration before the breakthrough of COmainly depended on the total amount of purge gas and the COmole fraction in the inlet syngas.The residual COconcentration and uptake achieved for the inlet gas comprising CO(9.7 mL/min) and He(277.6 mL/min) at a working pressure of 3 MPa after 1 h of Ar purging at 300 mL/min were 12.3 ppm and0.341 mmol/g, respectively. Steam purge could greatly improve the cyclic adsorption working capacity, but had no obvious benefit for the recovery of the residual COconcentration compared to purging with an inert gas. The residual COconcentration obtained with the adsorbent could be reduced to 3.2 ppm after 12 h of temperature swing at 450 °C. A new concept based on an adsorption/desorption process, comprising adsorption, steam rinse, depressurization, steam purge, pressurization, and high-temperature steam purge, was proposed for reducing the steam consumption during CO/COpurification.
基金supported by the National Natural Science Foundation of China (10972006, 11172004)National Basic Research Program of China (2010CB832701)
文摘In this paper, a new method of topological cleanup for quadrilateral mesh is presented. The method first selects a patch of mesh around an irregular node. It then seeks the best connection of the selected patch according to its irregular valence using a new topological operation: small polygon reconnection (SPR). By replacing the original patch with an optimal one that has less irregular valence, mesh quality can be improved. Three applications based on the proposed approach are enumerated: (1) improving the quality of a quadrilateral mesh, (2) converting a triangular mesh to a quadrilateral one, and (3) adapting a triangle generator to a quadrilateral one. The presented method is highly effective in all three applications.
基金supported by National Natural Science Foundation of China(Nos.20836008 and 21076189)
文摘Although electrohydraulic discharge is effective for wastewater treatment,its application is restricted by water conductivity and limited to the treatment of low conductivity water. For high conductivity water treatment,water-surface discharge is the preferred choice.However. the metallic electrodes are easily corroded because of the high temperature and strong oxidative environment caused by gas phase discharge and the electrochemical reaction in water.As a result. the efficiency of the water treatment might be affected and the service life of the reactor might be shortened.In order to avoid the corrosion problem,nonmetallic electrode water-surface discharge is introduced into high conductivity water treatment in the present study.Carbon-felt and water were used as the high voltage electrode and ground electrode,respectively.A comparison of the electrical and chemical characteristics showed that nonmetallic electrode discharge maintained the discharge characteristics and enhanced the energy efficiency,and furthermore,the corrosion of metal electrodes was avoided.
文摘Medical wastes have been implicated in river pollution in developing countries and most often people depend on water from such rivers for sources of livelihood. Phthalates (endocrine disruptors) are major components in medical wastes and are commonly found contaminants in aquatic environment. Most sewage treatment facilities handling medical waste are inefficient due to overuse and poor maintenance and discharge directly into rivers. This study aimed to investigate the identity and estimates the concentration of phthalates in supposed treated medical wastes from a hospital sewer and water from a receiving river. Samples were randomly collected before and after treatment by the sewer plants, while samples were randomly collected along the course of the river starting from point of discharge. Control samples were taken from upstream about 500 m along the river course. The samples were extracted by liquid-liquid chroma- tographic process using dichloromethane, after which they were cleaned up in a column of silica gel using hexane as the mobile solvent. The cleaned extracts were analyzed by HPLC. The concentrations (μg/L) of dimethyl-, diethyl-, diphenyl-, dibutyl- and di-(2-ethyl)hexyl phthalates ranged from 62.81 ± 18.53;4.74 ± 3.57;2.05 ± 1.80;11.40 ± 5.58 to 141.92 ± 35.8 respectively in the sewer waste. The receiving river had a concentration (μg/L) of 9.17 ± 14.02;0.18 ± 0.31;0.48 ± 0.84;2.84 ± 1.21;61.72 ± 38.35 respectively for dimethyl-, diethyl-, diphenyl-, dibutyl- and di-(2-ethyl) hexyl phthalates. These concentrations were higher than control and far exceeded the USEPA limits of 3 μg/l recom- mended for phthalates in water. Contaminants of aquatic environment by untreated wastes from hospitals has serious implications on public health and environment as human risks for phthalate esters downstream are high and this calls for urgent need to develop strategy to build incentives for compliance in treatment and discharge of wastes into river waters.
文摘The composite sorbent, including an active inorganic component (alumosilicates derived from clay-salt slimes) in the quantity of more than 80 mas.% and the polymer binder (polyacrylamide) was obtained. The influences of various factors on its sorption and mechanical properties were studied. It is established that the content of polyacrylamide in the composite sorbent should be in the range of 10-15 mas.%. It is shown that quasi-equilibrium of ^137Cs in the system "sorbent-solution" is reached within 80 rain. The distribution coefficient (Kd) is 2.4× 10^4 cm^3/g. The obtained data of kinetic parameters (diffusion coefficient and sorption during half-time) show that the received sorbent can be referred to sorbents with high rate of ^137Cs sorption.
文摘The study assesses the spatial distribution and sources of mercury contamination in the Ankobra River Basin in southwestern Ghana and discusses possible remediation options and challenges. Eighty-two (82) samples of water and streambed sediments from areas of active and historic artisanal mining and historic mine spoil from large-scale mining were analysed for their total mercury content using cold vapour Atomic Fluorescence Spectrometry (CV-AAS). The highest Hg concentrations were recorded from historic mine tailings, legacy of large scale mines in the area, which averaged 795 ppb but ranged from 80 ppb to 2500 ppb. Concentrations in streambed sediments averaged 139 ppb, but ranged from 63 ppb to 270 ppb. Water, expectedly, gave the lowest Hg concentrations with a mean value of 1.5 ppb, but ranged from below detection to 8 ppb. Areas worked by artisanal miners and historic tailings dumps at Bondaye and Prestea recorded the highest mercury values. These high mercury concentration sites constitute potential sources of major mercury pollution in the area and therefore require major and urgent clean up to mitigate any major health risks. However, any remediation strategy would require further and detailed study of the contaminated sites and an evaluation of known remediation techniques to achieve maximum results.
基金Supported by Key Major Production Accident Prevention and Control Technology Project of State Administration of Work Safety in 2015(shandong-0075-2015AQ)
文摘In this paper,we design a farm machine integrating the functions of chopping field straw,pressing field straw into soil,breaking stubble,and cleaning up plastic film,in order to improve the efficiency of plastic film cleaning,enrich the function of straw chopping equipment,reduce the noise generated at work,and further realize the intelligent harmony. The remote control button is used to control the work of the entire system,and the bluetooth remote control module and matrix keyboard are used to control the vehicle. With STM32 microcontroller as the main control chip,the machine controls the motion of the electric motor by relay,and employs LCD screen to realize real-time display of system work. It is convenient and easy to operate,with good human-computer interaction.
基金supported by the Qihang Project of Zhejiang University(Grant No.202016)。
文摘Based on differential game theory,the decision-making problem of two homogeneous countries facing transboundary marine litter governance is studied.On the basis of assuming that the input of marine litter is an exogenous variable,the focus is on reducing the accumulation of marine litter through cleanup and transfer processing by both parties.Considering the constant and increasing input of marine litter,in the framework of international agreement constraints,the analysis of the game behavior of the players in the marine litter governance under the open-loop strategy(in the case of agreement constraints)and the Markov strategy(in the case of no agreement constraints)was compared and analyzed.The research results show that when the direct pollution cost of marine litter is high enough,both sides of the game adopt an open-loop strategy that complies with the constraints of the agreement,which can reduce the accumulation of marine litter and improve the environmental quality.However,when there is a high initial accumulation of marine litter,the Markov strategy without protocol constraints will be better than the open-loop strategy.In the case that marine litter does not need to be transferred,there will be no difference between the two sides of the game adopting the Markov strategy and adopting the open-loop strategy on the equilibrium growth path.
文摘With financial assistance from the US Department of Energy and the Illinois Clean Coal Institute, Gas Technology Institute (GTI) has been working with the University of California, Berkeley, for further development of their UCSRP-HP (University of California Sulfur Recovery Process-High Pressure) technology. The key focus of the UCSRP-HP technology is integrated multi-contaminant removal of hydrogen sulfide (H2S), carbonyl sulfide (COS), ammonia (NH3), chlorides and heavy metals present in coal-derived syngas. The process has two major components: 1) removal of various trace components with a solvent (e.g., diethylene glycol or water) using a high-pressure scrubbing unit and 2) removal of H2S as sulfur via reaction with SO2 (in the presence of a solvent mixed a small quantity of a homogeneous catalyst) at 120?C to 150?C and at any syngas pressure. During this research, data critical to developing and evaluating UCSRP-HP technology for multi-contaminant removal from syngas derived from Illinois #6 coal were obtained. In this paper, we have presented key economic evaluations of the UCSRP-HP process, including potential integrations with other technology options for CO2 and hydrogen separations, for a nominal Illinois #6-coal-based 550-MWe Integrated Coal Gasification Combined Cycle (IGCC) facility with CO2 capture and sequestration. GTI is exploring various options to demonstrate this technology in a pilot plant using actual syngas from a coal gasifier.
基金National Natural Science Foundation of China (51005183) National Science and Technology Major Project (2011X04016-031)
文摘Machining quality of clean-up region has a strong influence on the performances of the impeller. In order to plan clean-up tool paths rapidly and obtain good finish surface quality, an efficient and robust tool path generation method is presented, which employs an approach based on point-searching. The clean-up machining mentioned in this paper is pencil-cut and multilayer fillet-cut for a free-form model with a ball-end cutter. For pencil-cut, the cutter center position can be determined via judging whether it satisfies the distance requirement. After the searching direction and the tracing direction have been determined, by employing the point-searching algorithm with the idea of dichotomy, all the cutter contact (CC) points and cutter location (CL) points can be found and the clean-up boundaries can also be defined rapidly. Then the tool path is generated. Based on the main concept of pencil-cut, a multilayer fillet-cut method is proposed, which utilizes a ball-end cutter with its radius less than the design radius of clean-up region. Using a sequence of intermediate virtual cutters to divide the clean-up region into several layers and given a cusp-height tolerance for the final layer, then the tool paths for all layers are calculated. Finally, computer implementation is also presented in this paper, and the result shows that the proposed method is feasible.
文摘We demonstrate a novel approach to achieve wavelength-tunable ultrashort pulses from an all-fiber mode-locked laser with a saturable absorber based on the nonlinear Kerr beam clean-up effect.This saturable absorber was formed by a single-mode fiber spliced to a graded-index multimode fiber,and its tunable band-pass filter effect is described by a numerical model.By adjusting the bending condition of the graded-index multimode fiber,the laser could produce dissipative soliton pulses with their central wavelength tunable from 1040 nm to 1063 nm.The pulse duration of the output laser could be compressed externally to 791 fs,and the signal to noise ratio of its radio frequency spectrum was measured to be 75.5 dB.
文摘The existence of liquid water was found very important in incineration flue gas clean-up systems for enhancing the absorption of acid components contained. In a newly developed incineration flue gas clean-up tower, which works in a semi-dry mode, the water is injected in the form of spray to maximum its contact surface with the gas. The criteria for the design of the water nozzles would be nigh water concentration but no liquid impinging on the solid wall and complete evaporation inside the tower. In order to optimize the atomizer design, the effects of the spray type (hollow or solid cone), their initial droplet she distribution and water flow rate on the performance of the acid gas absorption were investigated. The liquid behaviour was studied with a fluid dynamic simulation code, and the overall performance was checked experimentally. This paper presents the use of a commercial CFD code, FLUENT, and some modifications made during such investigation. The modification includes the viscosity of the flue gas defined as a function of the temperature, and the initial mass fraction of different droplet size group described with an exponential distribution formula of Rosin-Rammler. The investigation results (the optimal spray parameters) were used to guide the water nozzle design. The general performance of the flue gas clean-up system measured during the plant operation complied with the design criteria.
基金National Natural Science Foundation of China,Grant/Award Numbers:22108125,21971113,22175094Independent Innovation of Agricultural Science and Technology in Jiangsu Province,Grant/Award Numbers:CX(21)3166,CX(21)3163+3 种基金the Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210627Doctor Project of Mass Entrepreneurship and Innovation in Jiangsu Province,Grant/Award Number:JSSCBS20210549Nanjing Science&Technology Innovation Project for Personnel Studying Abroad and Research Start-up Funding of Nanjing Forestry University,Grant/Award Number:163020259partially supported by the funding from the New ZealandMinistry of Business,Innovation and Employment(MBIE)in the Framework of the Strategic Science Investment Fund(No.C04X1703,Scion Platforms Plan)。
文摘Designing highly porous materials is of great importance for liquid separation,water purification,and disinfection,such as spill oil cleaning and recycling,seawater desalting,and oil/water separation.However,a remaining challenge is to produce porous materials with the characteristics of fast absorption,continuous directional transport,and self-release of viscous liquid.Herein,a functional cellulosic composite is reported by the chemical treatment and functionalization of wood resulting in a smart wood that can thermally selfrelease and separate high viscosity oil.The smart wood has a high absorption speed of 1398 mL/(m_(2)·s)(ethylene glycol)and a maximum absorption capacity of 47.2 g/g(chloroform)due to its intrinsic vertical micro/nanoscale channel structure,low tortuosity,and high porosity.Moreover,the switchable wettability is achieved by the surface coating of poly(N-isopropylacrylamide)on the porous wood,which enables the collection and removal of oil from the oil/water mixture.The high viscosity oil can be automatically released due to the passive oil release at room temperature.The release capacity of the smart wood remains above 91%after 15 cyclic tests.We envision that this functional smart wood could be extended to a wide range of applications in smart hydrogels,microfluidics,artificial drug release,and environmental restoration.
基金support for this work by the International Science & Technology Cooperation Program of China (2010DFB70560) and(2010GH0902)
文摘The present work explores how much IGCC can benefit from warm gas clean-up(WGCU)in comparison with conventional cold gas clean-up(CGCU) and what are the respective contributions of dry particulates removal and warm gas desulfurization (WGD) in a plant-wide point of view. Influences of key parameters of WGD on ther- modynamic performance of IGCC plant including desulfurization temperature, oxygen concentration in the re- generation stream, and H2S removal efficiency are discussed. It is obtained that the net efficiency of IGCC with full WGCU experiences an improvement of 1.77 percentage points compared with IGCC with full CGCU. Of which, dry particulates removal without water scrubber contributes about 1 percentage point. The influence of desulfurization temperature on thermodynamic performance of IGCC with WGD is weak especially when it is higher than about 350~C, which indicates that more focus should be put on investment cost, technical feasibility and sorbent stability for the selection of optimal operation temperature. Generally, 2%-3% of oxygen concentra- tion in the regeneration stream might be reasonable in a thermodynamic performance point of view. In addition, the improvement of 0.31 percentage points can be obtained by removal of H2S in the syngas from 27 ppm to 3 ppm.