Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding ...Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells.展开更多
A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in por...A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.展开更多
Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic...Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.展开更多
In order to explore the influence of sandstone architecture on waterflooding mechanisms using the architecture method,and taking as an example the M-I layer of the Kumkol oilfield in the South Turgay Basin,Kazakhstan,...In order to explore the influence of sandstone architecture on waterflooding mechanisms using the architecture method,and taking as an example the M-I layer of the Kumkol oilfield in the South Turgay Basin,Kazakhstan,we portrayed the architecture features of different types of sandstones and quantitatively characterized heterogeneities in a single sand body in meandering river facies.Based on the waterflooding characteristics of point bar sand and overbank sand according to waterflooded interpretation results in 367 wells and numerical simulation results of well groups,we finally analyzed the remaining oil potential of the meandering river sandstone and pointed out its development directions at the high water cut stage.The result shows that because lateral accretion shale beds are developed inside single sand bodies,the point bar sand is a semi-connected body.The overbank sand is thin sandstone with poor connectivity,small area and fast lateral changes.The heterogeneity of the overbank sand is stronger than the point bar sand.The sandstone architectures control the waterflooding characteristics.In meandering river sandstones,the bottom of the point bar sand is strongly waterflooded,while the top of the point bar sand and most of the overbank sand are only weakly waterflooded or unflooded.The thickness percentage of unflooded zone and weakly waterflooded zone in point bar sand is 40%,and the remaining oil in its top part is the main direction for future development.展开更多
The characteristics of ultralow permeability reservoirs changed after waterflooding. Thin- section analysis and scanning electron microscopy (SEM) of core samples from inspection wells indicated that calcite and bar...The characteristics of ultralow permeability reservoirs changed after waterflooding. Thin- section analysis and scanning electron microscopy (SEM) of core samples from inspection wells indicated that calcite and barite were formed in ultralow permeability reservoirs during waterflooding operations. Some asphaltene precipitates on the surface of formation rock would influence the reservoir porosity, permeability, wettability, and electrical properties. In this paper, the changes of physical, electrical, and fluid properties of ultralow permeability reservoirs during waterflooding operations were analyzed. This provides important information to improve waterflooding performance in ultralow permeability reservoirs.展开更多
Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of C...Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.展开更多
Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME- enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance th...Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME- enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance the performance of conventional waterflood. When DME is injected into the reservoir and contacts the oil, the first-contact miscibility process occurs, which leads to oil swelling and viscosity reduction. The reduction in oil density and viscosity improves oil mobility and reduces residual oil saturation, enhancing oil production. A numerical study based on compositional simulation has been developed to describe the phase behavior in the DEW model. An accurate compositional model is imperative because DME has a unique advantage of solubility in both oil and water. For DEW, oil recovery increased by 34% and 12% compared to conventional waterflood and CO2 flood, respectively. Compositional modeling and simulation of the DEW process indicated the unique solubility effect of DME on EOR performance.展开更多
Waterflooding experiments were conducted in micro-models(microscopic scale)and on plunger cores from low permeability,extra-low permeability and ultra-low permeability reservoirs in the Ordos Basin under different dis...Waterflooding experiments were conducted in micro-models(microscopic scale)and on plunger cores from low permeability,extra-low permeability and ultra-low permeability reservoirs in the Ordos Basin under different displacement pressures using the NMR techniques to find out pore-scale oil occurrence state,oil production characteristics and residual oil distribution during the process of waterflooding and analyze the effect of pore structure and displacement pressure on waterflooding efficiency.Under bound water condition,crude oil mainly occurs in medium and large pores in the low-permeability sample,while small pores and medium pores are the main distribution space of crude oil in extra-low permeability and ultra-low permeability samples.During the waterflooding,crude oil in the medium and large pores of the three types of samples are preferentially produced.With the decrease of permeability of the samples,the waterflooding front sequentially shows uniform displacement,network displacement and finger displacement,and correspondingly the oil recovery factors decrease successively.After waterflooding,the residual oil in low-permeability samples is mainly distributed in medium pores,and appears in membranous and angular dispersed phase;but that in the extra-low and ultra-low permeability samples is mainly distributed in small pores,and appears in continuous phase formed by a bypass flow and dispersed phase.The low-permeability samples have higher and stable oil displacement efficiency,while the oil displacement efficiency of the extra-low permeability and ultra-low permeability samples is lower,but increases to a certain extent with the increase of displacement pressure.展开更多
Through reviewing the generation process and essential characteristics of waterflooding curves, the essence and characteristics of Zhang Jinqing waterflooding curve and Yu Qitai waterflooding curve recommended in Chin...Through reviewing the generation process and essential characteristics of waterflooding curves, the essence and characteristics of Zhang Jinqing waterflooding curve and Yu Qitai waterflooding curve recommended in Chinese Petroleum Industry Standard 'Calculation methods for Recoverable Oil Reserves(SY/T5367—1998)' were discussed, and some technical issues related to the curves were examined in-depth. We found that:(1) All the waterflooding curves are based on empirical formulas derived from oilfield production experience and statistics methods, and can characterize oil displacement features by water quite well.(2) A new waterflooding curve can be derived by combining waterflooding parameters and using different mathematical calculations as long as the parameter combinations and mathematical operation meet a linear relationship, so proposing new waterflooding curves by changing the combination mode has no practical significance anymore.(3) The upwarp of waterflooding curve in the extremely high water cut stage is because the mobility ratio curve has an inflection point with the rapid rise of water cut after reaching a certain value, and the later rapid rise of mobility ratio changes the original two-phase flow dynamics.(4) After entering into water cut stage, all the waterflooding curves with linear relationship can be used to make prediction, even curves with inflection points, as long as they have a straight section above the inflection point.(5) Actual data of waterflooding oilfields has proved that Type A, Zhang Jinqing and Yu Qitai waterflooding curves all can predict accurately oil recoverable reserves in extremely high water cut stage and can be promoted.展开更多
Oil field waterflooding is a complex man-controlled systematic behavior, and the related evaluation methods vary greatly. This paper put forward a fuzzy comprehensive method of evaluating controlled development level ...Oil field waterflooding is a complex man-controlled systematic behavior, and the related evaluation methods vary greatly. This paper put forward a fuzzy comprehensive method of evaluating controlled development level by analysis of the macroscopic evaluation to oil field waterflooding effect with combination of original reservoir geological state. This fuzzy evaluation technique bears unique advantages because there is little difference among evaluation indexes which represent the dynamic and static state of regional neighborhood of development units (blocks, Production Company<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> etc.). Not only the mathematical method for evaluating oil field waterflooding effect is set up, but also the method is applied in three blocks of D oil field. The calculated results show the effectiveness and practicability of the method.</span></span></span>展开更多
Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field...Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced.展开更多
Waterflood-induced fractures,also known as self-induced fractures,spontaneously form at injection wells during waterflooding.These fractures propagate long distances through rock,allowing injected fluids to travel far...Waterflood-induced fractures,also known as self-induced fractures,spontaneously form at injection wells during waterflooding.These fractures propagate long distances through rock,allowing injected fluids to travel far away from a well,both within and outside the flooding layer.Essentially,the me-chanics of waterflood-induced fracture propagation is similar to that of hydraulic fractures,which are intentionally created for reservoir stimulation.Fracturing models developed for hydraulic fractures can also be applied to waterflood-induced fractures.However,waterflood-induced fractures are typically pumped with much larger volumes of water or brine and grow much longer in time.As a result,fluid leakoff from waterflood fractures into the formation is more extensive and two-dimensional(2D),a characteristic that is often ignored in a majority of modern fracturing simulators,making their appli-cation to waterflood fractures unreliable.In this work,we revisit the problem of leakoff for long-growing waterflood-induced fractures and develop a new analytical model for fluid leakoff that provides improved predictions of fracture geometry and can be easily implemented in fracturing simulators.We incorporate the developed solution into the classical Perkins-Kern-Nordgren(PKN)model of fracture growth,which shows that the choice of the Carter or a 2D leakoff model greatly impacts fracture ge-ometry at large time.The conducted parametric study shows while a toughness-dominated regime af-fects fracture evolution,most of fracture lifetime occurs in a viscosity-and-leakoff-dominated regime.We also develop an asymptotic solution for a leakoff profile in the limiting case of 2D leakoff domination(~~M and~~K).Finally,we study 3D fracture growth and out-of-zone injection with three layers and a complex structure of zones.The study shows that ignoring the 2D leakoff during simulation results in a significant overestimation of fracture geometry predictions.The present work,thus,plays an important role in improving waterflood fracture modelling,as it highlights the significance of 2D leakoff in waterflood-induced fractures and provides a reliable analytical model for fluid leakoff that can be incorporated into modern fracture simulators.展开更多
A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the pr...A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the proposed integrated technology is described together with the related process flow diagram,the criteria used to select a tar-get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics.Moreover,the outcomes of numerical simulations performed using Ansys CFX software are also presented.According to these results,using the proposed approach the incremental oil production may reach 1.2 t/day(with a 13%increase)and more,even at low flow rates(less than 10 t/day),thereby providing evidence for the benefits associated with this integrated technology.展开更多
The continuous growth of recoverable reserves in a waterflooding oilfield has a significant impact on the patterns of production evolution. A new production evolution model is established by improving the Weng Cycle m...The continuous growth of recoverable reserves in a waterflooding oilfield has a significant impact on the patterns of production evolution. A new production evolution model is established by improving the Weng Cycle model. With the new model, the statistical correspondence between the production decline stage and the reserve-production imbalance is clarified,and the correlation of water cut with the recovery percent of recoverable reserves is discussed, providing quantitative basis of reservoir engineering for dividing development stages of oilfield and defining mature oilfields. According to the statistics of oilfields in eastern China, the time point corresponding to the reserve-production balance coefficient dropping to less than 1dramatically is well correlated the beginning point of production decline, thus the time when the reserve-production balance coefficient drops dramatically can be taken as the initiation point of production decline stage. The research results show that the water cut and the recovery percent of recoverable reserves have a good statistical match in the high water cut stage, and it is more rational to take both the start point of production decline stage and the water cut of 90%(or the recovery percent of recoverable reserves of 80%) as the critical criteria for defining a mature oilfield. Five production evolution patterns can be summarized as follows: growth–peak plateau–stepped decline, growth–stepped stabilizing–stepped decline, growth–stepped stabilizing–rapid decline, growth–peak plateau–rapid decline, and growth–continuous decline.展开更多
The rapid production dynamic prediction of water-flooding reservoirs based on well location deployment has been the basis of production optimization of water-flooding reservoirs.Considering that the construction of ge...The rapid production dynamic prediction of water-flooding reservoirs based on well location deployment has been the basis of production optimization of water-flooding reservoirs.Considering that the construction of geological models with traditional numerical simulation software is complicated,the computational efficiency of the simulation calculation is often low,and the numerical simulation tools need to be repeated iteratively in the process of model optimization,machine learning methods have been used for fast reservoir simulation.However,traditional artificial neural network(ANN)has large degrees of freedom,slow convergence speed,and complex network model.This paper aims to predict the production performance of water flooding reservoirs based on a deep convolutional generative adversarial network(DC-GAN)model,and establish a dynamic mapping relationship between well location deployment and output oil saturation.The network structure is based on an improved U-Net framework.Through a deep convolutional network and deconvolution network,the features of input well deployment images are extracted,and the stability of the adversarial model is strengthened.The training speed and accuracy of the proxy model are improved,and the oil saturation of water flooding reservoirs is dynamically predicted.The results show that the trained DC-GAN has significant advantages in predicting oil saturation by the well-location employment map.The cosine similarity between the oil saturation map given by the trained DC-GAN and the oil saturation map generated by the numerical simulator is compared.In above,DC-GAN is an effective method to conduct a proxy model to quickly predict the production performance of water flooding reservoirs.展开更多
A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out....A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan.展开更多
Based on systematically summarizing the achievements of previous ion-matched waterflooding researches,the diversity and synergy of oil recovery enhancement mechanisms and the interaction between mechanisms are examine...Based on systematically summarizing the achievements of previous ion-matched waterflooding researches,the diversity and synergy of oil recovery enhancement mechanisms and the interaction between mechanisms are examined according to two classification standards,and the influence of behaviors of different ions on different mechanisms and oil displacement efficiency are investigated.Ionic strength is proposed to characterize the behavior differences of univalent and divalent ions,the relationships between ionic strength,effective concentration,and mechanisms are established to characterize the ion behavior behind various mechanisms,and evaluate the performance of ion-matched injection water.The mechanisms of enhancing oil recovery by ion-matched waterflooding include:(1)The ion-matched water can reduce the ion strength and match the ion composition of formation water,thereby reducing the difference between the effective concentration of univalent ions and divalent ions on the surface of carbonate rocks,and improving the effective concentration of potential determining ions(especially SO42-).(2)It can improve wettability,oil-water interface properties,pore structure and physical properties of the reservoir,and finally enable the establishment of a new ionic equilibrium conducive to waterflooding while breaking the original equilibrium.In this study,experiments such as relative permeability curve,interfacial tension,and core-flooding were carried out on carbonate core samples from the Cretaceous Mishrif Formation reservoirs in Halfaya Oilfield,Middle East,a method for injection water evaluation was established and the injection water suitable for these reservoirs was selected:6 times diluted seawater.Compared with ordinary seawater,oil displacement efficiency can be increased by more than 4.60%and compared with the optimum dilution of formation water,oil displacement efficiency can be increased by 3.14%.展开更多
The theoretical relationship between water injection multiple(i.e.injected pore volume)and water saturation is inferred from theoretical concepts of reservoir engineering.A mathematical model based on core displacemen...The theoretical relationship between water injection multiple(i.e.injected pore volume)and water saturation is inferred from theoretical concepts of reservoir engineering.A mathematical model based on core displacement tests is established for the entire injection process that satisfies both initial displacement and extreme displacement,simultaneously.The results show that prior to the flooding,the water injection multiple has a linear relationship with the water saturation,and the utilization rate of the injected water is the highest.As water breakthrough at the production end,the water-cut increases,and the injection multiple increases exponentially while the utilization efficiency of the injected water gradually decreases.When the injection multiple approaches infinity,the utilization efficiency of the injected water gradually decreases to 0,by which time the water-cut at the production end is always 1.At this time,the water saturation no longer changes,and the water flooding recovery rate reaches its limit.Based on the experimental test data,a mathematical model of the entire process of injection multiple and water saturation is established,which has high fitting accuracy that can predict the injection multiple in the different stages of development of a mature oil reservoir.The dynamically changing index of the injection water utilization efficiency in reservoir development by reactive water flooding can be obtained through reasonable transformation of the mathematical model.This is of great significance in guiding evaluations of the effects of reservoir development and formulating countermeasures.展开更多
There is a need to increase ultimate recovery from petroleum reservoirs. In order to guarantee efficient resource extraction from reservoirs, primary recovery methods cannot be relied on throughout the life of a well....There is a need to increase ultimate recovery from petroleum reservoirs. In order to guarantee efficient resource extraction from reservoirs, primary recovery methods cannot be relied on throughout the life of a well. There is a time in the life of a reservoir when the primary energy will not be sufficient to ensure economic recovery. Complete abandonment of the reservoir at this point may not be a sound engineering decision given the huge investments in developing the asset. Secondary recovery methods present potentials for the recovery of the other trapped resources. The choice of the secondary recovery means depends on the reservoir and geologic conditions and should be determined by modeling and simulation. In this work, a simulation study is conducted for Niger Delta Field ABX2 to determine the performance of water-flooding and gas injection in the recovery of the asset after the primary recovery stage. ECLIPSE Blackoil simulator was used for the modeling and simulation. An equal reservoir rectangular grid block was designed for both the waterflooding and water injection comprising a total of 750 grid cells. Water and gas were injected in both cases at an injection rate of 11,000 stb/d and 300,000 scf/d for waterflooding and gas injection respectively. From the results of the simulation, it was realized that waterflooding gave a higher total oil recovery than gas injection. The difference in oil recovery from water-flooding and gas injection amounted to 0.08 MMstb/d. The Field Oil Recovery Efficiency (FOE) for waterflooding and gas injection was 38% and 16% respectively giving a difference of 22%. The waterflooding method was troubled with excessive water cuts due to water breakthroughs. Waterflooding was chosen against gas injection to be applied to Field ABX2 to improve recovery after primary production ceased.展开更多
基金funded by a Major Science and Technology Project of China National Petroleum Corporation(CNPC)entitled Research on Key Technologies for Efficient Production of Overseas Large Carbonate Reservoir”(2023ZZ19-08).
文摘Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells.
基金Supported by the Original Exploration Project of National Natural Science Foundation of China(5215000105)Young Teachers Fund for Higher Education Institutions of Huo Yingdong Education Foundation(171043)。
文摘A simulated oil viscosity prediction model is established according to the relationship between simulated oil viscosity and geometric mean value of T2spectrum,and the time-varying law of simulated oil viscosity in porous media is quantitatively characterized by nuclear magnetic resonance(NMR)experiments of high multiple waterflooding.A new NMR wettability index formula is derived based on NMR relaxation theory to quantitatively characterize the time-varying law of rock wettability during waterflooding combined with high-multiple waterflooding experiment in sandstone cores.The remaining oil viscosity in the core is positively correlated with the displacing water multiple.The remaining oil viscosity increases rapidly when the displacing water multiple is low,and increases slowly when the displacing water multiple is high.The variation of remaining oil viscosity is related to the reservoir heterogeneity.The stronger the reservoir homogeneity,the higher the content of heavy components in the remaining oil and the higher the viscosity.The reservoir wettability changes after water injection:the oil-wet reservoir changes into water-wet reservoir,while the water-wet reservoir becomes more hydrophilic;the degree of change enhances with the increase of displacing water multiple.There is a high correlation between the time-varying oil viscosity and the time-varying wettability,and the change of oil viscosity cannot be ignored.The NMR wettability index calculated by considering the change of oil viscosity is more consistent with the tested Amott(spontaneous imbibition)wettability index,which agrees more with the time-varying law of reservoir wettability.
基金Supported by the Major Science and Technology Project of CNPC(2023ZZ19-01).
文摘Based on the waterflooding development in carbonate reservoirs in the Middle East,in order to solve the problem of the poor development effects caused by commingled injection and production,taking the thick bioclastic limestone reservoirs of Cretaceous in Iran-Iraq as an example,this paper proposes a balanced waterflooding development technology for thick and complex carbonate reservoirs.This technology includes the fine division of development units by concealed baffles and barriers,the combination of multi well type and multi well pattern,and the construction of balanced water injection and recovery system.Thick carbonate reservoirs in Iran-Iraq are characterized by extremely vertical heterogeneity,development of multi-genesis ultra-high permeability zones,and highly concealed baffles and barriers.Based on the technologies of identification,characterization,and sealing evaluation for concealed baffles and barriers,the balanced waterflooding development technology is proposed,and three types of balanced waterflooding development modes/techniques are formed,namely,conventional stratigraphic framework,fine stratigraphic framework,and deepened stratigraphic framework.Numerical simulations show that this technology is able to realize a fine and efficient waterflooding development to recover,in a balanced manner,the reserves of thick and complex carbonate reservoirs in Iran and Iraq.The proposed technology provides a reference for the development optimization of similar reservoirs.
基金funded by the Major Program of PetroChina(2011E-2506)
文摘In order to explore the influence of sandstone architecture on waterflooding mechanisms using the architecture method,and taking as an example the M-I layer of the Kumkol oilfield in the South Turgay Basin,Kazakhstan,we portrayed the architecture features of different types of sandstones and quantitatively characterized heterogeneities in a single sand body in meandering river facies.Based on the waterflooding characteristics of point bar sand and overbank sand according to waterflooded interpretation results in 367 wells and numerical simulation results of well groups,we finally analyzed the remaining oil potential of the meandering river sandstone and pointed out its development directions at the high water cut stage.The result shows that because lateral accretion shale beds are developed inside single sand bodies,the point bar sand is a semi-connected body.The overbank sand is thin sandstone with poor connectivity,small area and fast lateral changes.The heterogeneity of the overbank sand is stronger than the point bar sand.The sandstone architectures control the waterflooding characteristics.In meandering river sandstones,the bottom of the point bar sand is strongly waterflooded,while the top of the point bar sand and most of the overbank sand are only weakly waterflooded or unflooded.The thickness percentage of unflooded zone and weakly waterflooded zone in point bar sand is 40%,and the remaining oil in its top part is the main direction for future development.
基金the financial support from the major science and technology project of Petrochina(Key Technology Study of Stable Production and Enhanced Oil Recovery in the Changqing Oil field.No.2011E-1305)
文摘The characteristics of ultralow permeability reservoirs changed after waterflooding. Thin- section analysis and scanning electron microscopy (SEM) of core samples from inspection wells indicated that calcite and barite were formed in ultralow permeability reservoirs during waterflooding operations. Some asphaltene precipitates on the surface of formation rock would influence the reservoir porosity, permeability, wettability, and electrical properties. In this paper, the changes of physical, electrical, and fluid properties of ultralow permeability reservoirs during waterflooding operations were analyzed. This provides important information to improve waterflooding performance in ultralow permeability reservoirs.
基金Project(2015KTCL01-09)supported by the Innovation Project of Science and Technology of Shaanxi Province,ChinaProject(2015M582699)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016JQ4022)supported by the Natural Science Foundation Research Project of Shaanxi Province,ChinaProject(41702146)supported by the National Natural Science Foundation of China
文摘Actual sandstone micromodel was used in this work to conduct the microscopic waterflooding experiment of ultra-low sandstone reservoir,since the inside seepage characteristics of microscopic waterflooding process of Chang 8 ultra-low permeability sandstone reservoir of Upper Triassic Yanchang formation in Huaqing region of the Ordos Basin,China is difficult to observe directly.Combined with physical property,casting thin sections,constant-rate mercury injection capillary pressure and nuclear magnetic resonance,the influence of reservoir property on the waterflooding characteristics in pores were analyzed and evaluated.Seepage paths of waterflooding characteristics were divided into four types:homogeneous seepage,reticular-homogeneous seepage,finger-reticular seepage and finger-like seepage,the waterflooding efficiency of which decreases in turn.More than 70%of residual oil occurs as flowing-around seepage and oil film.Physical property,pore structure and movable fluid characteristics are all controlled by digenesis and their impacts on waterflooding efficiency are in accordance.Generally,the pore throat radius size and distribution and movable fluid percentage are closely related to waterflooding law.
基金supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) of the Ministry of Trade, Industry, & Energy, Republic of Korea (No. 20152520100760)
文摘Dimethyl ether (DME) is a widely used industrial compound, and Shell developed a chemical EOR technique called DME- enhanced waterflood (DEW). DME is applied as a miscible solvent for EOR application to enhance the performance of conventional waterflood. When DME is injected into the reservoir and contacts the oil, the first-contact miscibility process occurs, which leads to oil swelling and viscosity reduction. The reduction in oil density and viscosity improves oil mobility and reduces residual oil saturation, enhancing oil production. A numerical study based on compositional simulation has been developed to describe the phase behavior in the DEW model. An accurate compositional model is imperative because DME has a unique advantage of solubility in both oil and water. For DEW, oil recovery increased by 34% and 12% compared to conventional waterflood and CO2 flood, respectively. Compositional modeling and simulation of the DEW process indicated the unique solubility effect of DME on EOR performance.
基金Supported by the National Natural Scienceof China(No.U19B2010)Youth Science and Technology Innovation Team of the Southwest Petroleum University(2018CXTD10)。
文摘Waterflooding experiments were conducted in micro-models(microscopic scale)and on plunger cores from low permeability,extra-low permeability and ultra-low permeability reservoirs in the Ordos Basin under different displacement pressures using the NMR techniques to find out pore-scale oil occurrence state,oil production characteristics and residual oil distribution during the process of waterflooding and analyze the effect of pore structure and displacement pressure on waterflooding efficiency.Under bound water condition,crude oil mainly occurs in medium and large pores in the low-permeability sample,while small pores and medium pores are the main distribution space of crude oil in extra-low permeability and ultra-low permeability samples.During the waterflooding,crude oil in the medium and large pores of the three types of samples are preferentially produced.With the decrease of permeability of the samples,the waterflooding front sequentially shows uniform displacement,network displacement and finger displacement,and correspondingly the oil recovery factors decrease successively.After waterflooding,the residual oil in low-permeability samples is mainly distributed in medium pores,and appears in membranous and angular dispersed phase;but that in the extra-low and ultra-low permeability samples is mainly distributed in small pores,and appears in continuous phase formed by a bypass flow and dispersed phase.The low-permeability samples have higher and stable oil displacement efficiency,while the oil displacement efficiency of the extra-low permeability and ultra-low permeability samples is lower,but increases to a certain extent with the increase of displacement pressure.
基金Supported by China National Science and Technology Major Project(2016ZX05016-006)
文摘Through reviewing the generation process and essential characteristics of waterflooding curves, the essence and characteristics of Zhang Jinqing waterflooding curve and Yu Qitai waterflooding curve recommended in Chinese Petroleum Industry Standard 'Calculation methods for Recoverable Oil Reserves(SY/T5367—1998)' were discussed, and some technical issues related to the curves were examined in-depth. We found that:(1) All the waterflooding curves are based on empirical formulas derived from oilfield production experience and statistics methods, and can characterize oil displacement features by water quite well.(2) A new waterflooding curve can be derived by combining waterflooding parameters and using different mathematical calculations as long as the parameter combinations and mathematical operation meet a linear relationship, so proposing new waterflooding curves by changing the combination mode has no practical significance anymore.(3) The upwarp of waterflooding curve in the extremely high water cut stage is because the mobility ratio curve has an inflection point with the rapid rise of water cut after reaching a certain value, and the later rapid rise of mobility ratio changes the original two-phase flow dynamics.(4) After entering into water cut stage, all the waterflooding curves with linear relationship can be used to make prediction, even curves with inflection points, as long as they have a straight section above the inflection point.(5) Actual data of waterflooding oilfields has proved that Type A, Zhang Jinqing and Yu Qitai waterflooding curves all can predict accurately oil recoverable reserves in extremely high water cut stage and can be promoted.
文摘Oil field waterflooding is a complex man-controlled systematic behavior, and the related evaluation methods vary greatly. This paper put forward a fuzzy comprehensive method of evaluating controlled development level by analysis of the macroscopic evaluation to oil field waterflooding effect with combination of original reservoir geological state. This fuzzy evaluation technique bears unique advantages because there is little difference among evaluation indexes which represent the dynamic and static state of regional neighborhood of development units (blocks, Production Company<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> etc.). Not only the mathematical method for evaluating oil field waterflooding effect is set up, but also the method is applied in three blocks of D oil field. The calculated results show the effectiveness and practicability of the method.</span></span></span>
基金the funding supported by Beijing Natural Science Foundation(Grant No.3222037)the PetroChina Innovation Foundation(Grant No.2020D-5007-0203)by the Science Foundation of China University of Petroleum,Beijing(Nos.2462021YXZZ010,2462018QZDX13,and 2462020YXZZ028)
文摘Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced.
文摘Waterflood-induced fractures,also known as self-induced fractures,spontaneously form at injection wells during waterflooding.These fractures propagate long distances through rock,allowing injected fluids to travel far away from a well,both within and outside the flooding layer.Essentially,the me-chanics of waterflood-induced fracture propagation is similar to that of hydraulic fractures,which are intentionally created for reservoir stimulation.Fracturing models developed for hydraulic fractures can also be applied to waterflood-induced fractures.However,waterflood-induced fractures are typically pumped with much larger volumes of water or brine and grow much longer in time.As a result,fluid leakoff from waterflood fractures into the formation is more extensive and two-dimensional(2D),a characteristic that is often ignored in a majority of modern fracturing simulators,making their appli-cation to waterflood fractures unreliable.In this work,we revisit the problem of leakoff for long-growing waterflood-induced fractures and develop a new analytical model for fluid leakoff that provides improved predictions of fracture geometry and can be easily implemented in fracturing simulators.We incorporate the developed solution into the classical Perkins-Kern-Nordgren(PKN)model of fracture growth,which shows that the choice of the Carter or a 2D leakoff model greatly impacts fracture ge-ometry at large time.The conducted parametric study shows while a toughness-dominated regime af-fects fracture evolution,most of fracture lifetime occurs in a viscosity-and-leakoff-dominated regime.We also develop an asymptotic solution for a leakoff profile in the limiting case of 2D leakoff domination(~~M and~~K).Finally,we study 3D fracture growth and out-of-zone injection with three layers and a complex structure of zones.The study shows that ignoring the 2D leakoff during simulation results in a significant overestimation of fracture geometry predictions.The present work,thus,plays an important role in improving waterflood fracture modelling,as it highlights the significance of 2D leakoff in waterflood-induced fractures and provides a reliable analytical model for fluid leakoff that can be incorporated into modern fracture simulators.
基金supported by the Government of Perm Krai,Research Project No.С-26/510。
文摘A new integrated oil production enhancement technology based on water-flooding energy recovery is proposed.After providing an extensive review of the existing scientific and technical literature on this subject,the proposed integrated technology is described together with the related process flow diagram,the criteria used to select a tar-get facility for its implementation and the outcomes of the laboratory studies conducted to analyze emulsion formation and separation kinetics.Moreover,the outcomes of numerical simulations performed using Ansys CFX software are also presented.According to these results,using the proposed approach the incremental oil production may reach 1.2 t/day(with a 13%increase)and more,even at low flow rates(less than 10 t/day),thereby providing evidence for the benefits associated with this integrated technology.
基金Supported by the National Natural Science Foundation of China (72088101)。
文摘The continuous growth of recoverable reserves in a waterflooding oilfield has a significant impact on the patterns of production evolution. A new production evolution model is established by improving the Weng Cycle model. With the new model, the statistical correspondence between the production decline stage and the reserve-production imbalance is clarified,and the correlation of water cut with the recovery percent of recoverable reserves is discussed, providing quantitative basis of reservoir engineering for dividing development stages of oilfield and defining mature oilfields. According to the statistics of oilfields in eastern China, the time point corresponding to the reserve-production balance coefficient dropping to less than 1dramatically is well correlated the beginning point of production decline, thus the time when the reserve-production balance coefficient drops dramatically can be taken as the initiation point of production decline stage. The research results show that the water cut and the recovery percent of recoverable reserves have a good statistical match in the high water cut stage, and it is more rational to take both the start point of production decline stage and the water cut of 90%(or the recovery percent of recoverable reserves of 80%) as the critical criteria for defining a mature oilfield. Five production evolution patterns can be summarized as follows: growth–peak plateau–stepped decline, growth–stepped stabilizing–stepped decline, growth–stepped stabilizing–rapid decline, growth–peak plateau–rapid decline, and growth–continuous decline.
基金supports from the National Natural Science Foundation of China(No.52104017)the Open Foundation of Cooperative Innovation Center of Unconventional Oil and Gas(Ministry of Education&Hubei Province)(No.UOG2022-14)the open fund of the State Center for Research and Development of Oil Shale Exploitation(33550000-21-ZC0611-0008).
文摘The rapid production dynamic prediction of water-flooding reservoirs based on well location deployment has been the basis of production optimization of water-flooding reservoirs.Considering that the construction of geological models with traditional numerical simulation software is complicated,the computational efficiency of the simulation calculation is often low,and the numerical simulation tools need to be repeated iteratively in the process of model optimization,machine learning methods have been used for fast reservoir simulation.However,traditional artificial neural network(ANN)has large degrees of freedom,slow convergence speed,and complex network model.This paper aims to predict the production performance of water flooding reservoirs based on a deep convolutional generative adversarial network(DC-GAN)model,and establish a dynamic mapping relationship between well location deployment and output oil saturation.The network structure is based on an improved U-Net framework.Through a deep convolutional network and deconvolution network,the features of input well deployment images are extracted,and the stability of the adversarial model is strengthened.The training speed and accuracy of the proxy model are improved,and the oil saturation of water flooding reservoirs is dynamically predicted.The results show that the trained DC-GAN has significant advantages in predicting oil saturation by the well-location employment map.The cosine similarity between the oil saturation map given by the trained DC-GAN and the oil saturation map generated by the numerical simulator is compared.In above,DC-GAN is an effective method to conduct a proxy model to quickly predict the production performance of water flooding reservoirs.
基金Huo Yingdong Education Foundation Young Teachers Fund for Higher Education Institutions(171043)Sichuan Outstanding Young Science and Technology Talent Project(2019JDJQ0036)。
文摘A forecasting method of oil well production based on multivariate time series(MTS)and vector autoregressive(VAR)machine learning model for waterflooding reservoir is proposed,and an example application is carried out.This method first uses MTS analysis to optimize injection and production data on the basis of well pattern analysis.The oil production of different production wells and water injection of injection wells in the well group are regarded as mutually related time series.Then a VAR model is established to mine the linear relationship from MTS data and forecast the oil well production by model fitting.The analysis of history production data of waterflooding reservoirs shows that,compared with history matching results of numerical reservoir simulation,the production forecasting results from the machine learning model are more accurate,and uncertainty analysis can improve the safety of forecasting results.Furthermore,impulse response analysis can evaluate the oil production contribution of the injection well,which can provide theoretical guidance for adjustment of waterflooding development plan.
基金Supported by the China National Science and Technology Major Project(2017ZX05030-001).
文摘Based on systematically summarizing the achievements of previous ion-matched waterflooding researches,the diversity and synergy of oil recovery enhancement mechanisms and the interaction between mechanisms are examined according to two classification standards,and the influence of behaviors of different ions on different mechanisms and oil displacement efficiency are investigated.Ionic strength is proposed to characterize the behavior differences of univalent and divalent ions,the relationships between ionic strength,effective concentration,and mechanisms are established to characterize the ion behavior behind various mechanisms,and evaluate the performance of ion-matched injection water.The mechanisms of enhancing oil recovery by ion-matched waterflooding include:(1)The ion-matched water can reduce the ion strength and match the ion composition of formation water,thereby reducing the difference between the effective concentration of univalent ions and divalent ions on the surface of carbonate rocks,and improving the effective concentration of potential determining ions(especially SO42-).(2)It can improve wettability,oil-water interface properties,pore structure and physical properties of the reservoir,and finally enable the establishment of a new ionic equilibrium conducive to waterflooding while breaking the original equilibrium.In this study,experiments such as relative permeability curve,interfacial tension,and core-flooding were carried out on carbonate core samples from the Cretaceous Mishrif Formation reservoirs in Halfaya Oilfield,Middle East,a method for injection water evaluation was established and the injection water suitable for these reservoirs was selected:6 times diluted seawater.Compared with ordinary seawater,oil displacement efficiency can be increased by more than 4.60%and compared with the optimum dilution of formation water,oil displacement efficiency can be increased by 3.14%.
文摘The theoretical relationship between water injection multiple(i.e.injected pore volume)and water saturation is inferred from theoretical concepts of reservoir engineering.A mathematical model based on core displacement tests is established for the entire injection process that satisfies both initial displacement and extreme displacement,simultaneously.The results show that prior to the flooding,the water injection multiple has a linear relationship with the water saturation,and the utilization rate of the injected water is the highest.As water breakthrough at the production end,the water-cut increases,and the injection multiple increases exponentially while the utilization efficiency of the injected water gradually decreases.When the injection multiple approaches infinity,the utilization efficiency of the injected water gradually decreases to 0,by which time the water-cut at the production end is always 1.At this time,the water saturation no longer changes,and the water flooding recovery rate reaches its limit.Based on the experimental test data,a mathematical model of the entire process of injection multiple and water saturation is established,which has high fitting accuracy that can predict the injection multiple in the different stages of development of a mature oil reservoir.The dynamically changing index of the injection water utilization efficiency in reservoir development by reactive water flooding can be obtained through reasonable transformation of the mathematical model.This is of great significance in guiding evaluations of the effects of reservoir development and formulating countermeasures.
文摘There is a need to increase ultimate recovery from petroleum reservoirs. In order to guarantee efficient resource extraction from reservoirs, primary recovery methods cannot be relied on throughout the life of a well. There is a time in the life of a reservoir when the primary energy will not be sufficient to ensure economic recovery. Complete abandonment of the reservoir at this point may not be a sound engineering decision given the huge investments in developing the asset. Secondary recovery methods present potentials for the recovery of the other trapped resources. The choice of the secondary recovery means depends on the reservoir and geologic conditions and should be determined by modeling and simulation. In this work, a simulation study is conducted for Niger Delta Field ABX2 to determine the performance of water-flooding and gas injection in the recovery of the asset after the primary recovery stage. ECLIPSE Blackoil simulator was used for the modeling and simulation. An equal reservoir rectangular grid block was designed for both the waterflooding and water injection comprising a total of 750 grid cells. Water and gas were injected in both cases at an injection rate of 11,000 stb/d and 300,000 scf/d for waterflooding and gas injection respectively. From the results of the simulation, it was realized that waterflooding gave a higher total oil recovery than gas injection. The difference in oil recovery from water-flooding and gas injection amounted to 0.08 MMstb/d. The Field Oil Recovery Efficiency (FOE) for waterflooding and gas injection was 38% and 16% respectively giving a difference of 22%. The waterflooding method was troubled with excessive water cuts due to water breakthroughs. Waterflooding was chosen against gas injection to be applied to Field ABX2 to improve recovery after primary production ceased.