The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets ...The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets design requirements and guarantees the safe operation of subway lines.This paper focuses on discussing waterproof construction technology for subway station tunnels.By analyzing the main methods and techniques of underground tunnel construction,as well as the key techniques and difficulties of waterproofing construction,this paper examines the waterproofing construction project of Guangzhou Metro Culture Park Station as a case study.It analyzes the methods,quality management practices,and safety management strategies applied in the project.This paper serves as a reference for tunnel engineering design and construction units in our country,offering insights into effective waterproof construction techniques for subway tunnels.展开更多
Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the pro...Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW.展开更多
Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we u...Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we used a facile strategy to design the bio-based polyurethane(PU) nanofibrous membranes with the nanoscale porous structure to provide the membranes with high waterproof and breathable performances.The optimization of nanofibrous membrane formation was accomplished by controlling the relative ambient humidity to modulate the cooperating effects of charge dissipation and non-solvent-induced phase separation.The obtained EBWBMs showed multiple functional properties,with a hydrostatic pressure of 86.41 kPa and a water vapor transmission(WVT) rate of 10.1 kg·m^(-2)·d^(-1).After 1 000 cycles of stretching at 40% strain,the EBWBMs retained over 59% of the original maximum stress and exhibited an ideal elasticity recovery ratio of 85%.Besides,even after 80% deformation,the EBWBMs still maintained a hydrostatic pressure of 30.65 kPa and a WVT rate of 13.6 kg·m^(-2)·d^(-1),suggesting that bio-based PU nanofibrous membranes could be used for protection under extreme conditions.展开更多
文摘The waterproof construction of subway tunnels is a crucial and challenging aspect of subway tunnel engineering.Mastering excellent waterproof construction technology is essential to ensure that the construction meets design requirements and guarantees the safe operation of subway lines.This paper focuses on discussing waterproof construction technology for subway station tunnels.By analyzing the main methods and techniques of underground tunnel construction,as well as the key techniques and difficulties of waterproofing construction,this paper examines the waterproofing construction project of Guangzhou Metro Culture Park Station as a case study.It analyzes the methods,quality management practices,and safety management strategies applied in the project.This paper serves as a reference for tunnel engineering design and construction units in our country,offering insights into effective waterproof construction techniques for subway tunnels.
文摘Cementitious capillary crystalline waterproof materials(CCCW for short)offer durability and excellent waterproofing properties,making them a popular option for building waterproofing.Some scholars have studied the proportioning of such materials.However,these studies lack the relationship between the impermeability pressure of mortar and the components,and the mechanism of action is somewhat debatable.Therefore,we adopted a two-step method in our experiments.Firstly,we screened out the components that significantly impact impermeability from a variety of active components by orthogonal test.We then optimized the design of the active group ratio using the simplex lattice method.Lastly,we conducted a performance test of the optimal ratio and explored the waterproofing mechanism of homemade CCCW.
基金National Key R&D Program of China(No.2021YFE0105100)Fok Ying-Tung Education Foundation,China(No.171065)Shanghai Rising-Star Program,China(No.20QA1400500)。
文摘Elastic bio-based waterproof and breathable membranes(EBWBMs) allow the passage of water vapor effectively and resist the penetration of liquid water,making it ideal for use under extreme conditions.In this study,we used a facile strategy to design the bio-based polyurethane(PU) nanofibrous membranes with the nanoscale porous structure to provide the membranes with high waterproof and breathable performances.The optimization of nanofibrous membrane formation was accomplished by controlling the relative ambient humidity to modulate the cooperating effects of charge dissipation and non-solvent-induced phase separation.The obtained EBWBMs showed multiple functional properties,with a hydrostatic pressure of 86.41 kPa and a water vapor transmission(WVT) rate of 10.1 kg·m^(-2)·d^(-1).After 1 000 cycles of stretching at 40% strain,the EBWBMs retained over 59% of the original maximum stress and exhibited an ideal elasticity recovery ratio of 85%.Besides,even after 80% deformation,the EBWBMs still maintained a hydrostatic pressure of 30.65 kPa and a WVT rate of 13.6 kg·m^(-2)·d^(-1),suggesting that bio-based PU nanofibrous membranes could be used for protection under extreme conditions.