The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the We...The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the Western Himalayas,where hydroelectric projects(HEPs)have significantly altered river flow regimes.The research investigates the impact of flow alterations on the composition and structure of riparian vegetation in the Garhwal Himalayas,specifically analysing four rivers regulated by hydroelectric projects.Utilizing the paired-reach comparison method,control(undisturbed),diverted(downstream of barrage/dam),and altered flow conditions(downstream of water outlet)were examined.The research reveals diverse and unique riparian ecosystems,with 89 genera and 113 taxa identified,showcasing the dominance of families like Asteraceae and Lamiaceae.The study unveils the structural importance of key species such as Berberis asiatica and Artemisia nilagirica.The density,diversity,and richness of shrub and herb species vary significantly across flow conditions.Notably,altered flow conditions demonstrate resilience in vegetation structure,while diverted conditions exhibit decreased species richness and density.The study emphasizes the importance of nuanced environmental flow management for mitigating adverse effects on riparian biodiversity in the fragile Himalayan region.These findings contribute to the global discourse on dam impacts and riparian ecology,shedding light on the complexities of this dynamic relationship in a vulnerable ecosystem.展开更多
The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the wester...The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait.展开更多
Public participation is an important part of watershed water environment management. Via public participation, it could enhance public environmental awareness, mobilize multiple forces to reconcile the conflicts among...Public participation is an important part of watershed water environment management. Via public participation, it could enhance public environmental awareness, mobilize multiple forces to reconcile the conflicts among multiple interest groups, supervise corporate environmental be-havior, and overcome the shortcomings of government unilateral decision-making. In this paper, the status quo of public participating in water envi-ronment control is summarized, and the existing problems of public participating in water environment control are analyzed. From the aspects of per-fecting legal system, perfecting water environment information disclosure system, expanding information communication channels, correctly guiding the development of environmental social organization, playing the supervision role of the people's congress and political consultative committee, and enriching the forms of publicity and education, the countermeasures and suggestions of public participating in water environment control are proposed, to perfect public participation mechanism, and scientifically and orderly impel comprehensive treatment of water environment.展开更多
An investigation was carried out in the Y3 seamount area of the Western Pacific Ocean in December 2014,and the distribution of dissolved inorganic carbon(DIC)and its relationship with environmental factors in this are...An investigation was carried out in the Y3 seamount area of the Western Pacific Ocean in December 2014,and the distribution of dissolved inorganic carbon(DIC)and its relationship with environmental factors in this area were explored.The results show that DIC concentration was higher in the adjacent waters of the Y3 seamount area,and the uplift of DIC isolines at the stations was close to the seamount.Meanwhile,interaction between the North Equatorial Current(NEC)and the Y3 seamount affected the DIC distribution,i.e.,the upwelling in the same direction of the NEC was obvious,resulting in a decreasing trend of average concentration of DIC in the 200 m water column from the top to the two sides in this direction but in the cross direction.The DIC concentration increased with the water depth increase,and its distribution was affected by various environmental factors.In the surface water,high temperature was a decisive factor for the decrease of the DIC concentration,but the photosynthesis of phytoplankton showing only a weak influence.In the North Pacific Tropic Water(NPTW),DIC production rate from organic matter decomposition was higher than that of DIC consumption by phytoplankton photosynthesis,leading to a continual increase of DIC.In the North Pacific Intermediate Water(NPIW),organic matter decomposition played a leading role in the increase of DIC.In the deep water,decomposition of organic matter weakened,and the dissolution of CaCO3 controlled the carbonate system,and DIC had the smallest variation range.展开更多
The watershed of the Arbaa Ayacha River is an environment favorable to the development of the phenomena of water erosion as a result of its topographic features, lithological and climate. Therefore it has been the sub...The watershed of the Arbaa Ayacha River is an environment favorable to the development of the phenomena of water erosion as a result of its topographic features, lithological and climate. Therefore it has been the subject of evaluation of states erosive and of different causal factors of the risk of erosion by adaptation of cross-matrices based on directives PAP/RAC (Priority Actions Programme/Regional Activity Centre) [1]. This method is based on three approaches. The predictive approach provides a synthetic map of the distribution of the erosive states, with 51% of the basin subjected to high risks. The descriptive mapping of the various forms of erosion shows an enormous extension of stripping and sheet erosion (91%), superficial gullies and moderately deep gullies are growing in view of the gathering of runoffs from upstream to the downstream. The superposition of the results of both predictive and descriptive approaches gives a consolidated map PAP/RAC whose analysis shows that soils’ loss throughout the basin is proportional to the increase of the major factors of water erosion according to the level of importance: The topographical factor—soil types—slope-lithology following a positive linear relationship, while the order of the parameters that are negative linear relationship is density of vegetation cover-land cover [2]. This same map gives maximal losses corresponding mainly to friable lithologic natural areas of badlands at the center of the basin which correspond to Tensift’s terraces [3]. In the downstream basin, the combined effect of deep ravines and banks sapements promotes high risk while in the upstream, the localized solifluxions and gravity screens participate in serious losses.展开更多
In the sea area west of the middle line of Taiwan Straits, 116°40′~120°30′E, 22°22.9′~25°43′N, four cruises of comprehensive survey were conducted by the Third Institute of Oceanography, Stat...In the sea area west of the middle line of Taiwan Straits, 116°40′~120°30′E, 22°22.9′~25°43′N, four cruises of comprehensive survey were conducted by the Third Institute of Oceanography, State Oceanic Administration, from May, 1984 to February, 1985. The data concerned were taken from the quantitative samples obtained by using large-sized standard zooplankton nets, while the values adopted such as hydrological and chemical data of the various stations were from the average values of the field data of each one-meter layer.展开更多
The Indus river basin(IRB)is one of the most depleted water basins globally,having significant challenges for its water sector.Monitoring of stable isotope composition(δ^(18)O and δ^(2)H)across IRB is a critical asp...The Indus river basin(IRB)is one of the most depleted water basins globally,having significant challenges for its water sector.Monitoring of stable isotope composition(δ^(18)O and δ^(2)H)across IRB is a critical aspect that can provide deeper insights for investigating complex hydrological processes.This work analyses the spatial pattern of the isotopic signature using a comprehensive compilation of available datasets of the Global Network of Isotopes in River(GNIR)and Global Network of Isotopes in Precipitation(GNIP),along with the previously published isotopic studies in the Indus basin.Additionally,this work provides a detailed comparison of the isotopic signature of the Upper Indus Basin(UIB),and Lower Indus Basin(LIB).The IRBs waterline was found to beδ^(2)H=7.89×δ^(18)O+13.51,which shows a close similarity with the Global Meteoric Water Line(GMWL),indicating the meteoric origin of the water with insignificant secondary evaporation prevailing across the basin.The Main Indus Channel(MIC)river water line(δ^(2)H=8.88×δ^(18)O+26.05)indicates a major contribution from the meteoric origin(precipitation/rain)of water with minimal effect of evaporation processes.The water line for UIB samples,(δ^(2)H=7.88×δ^(18)O+11.94)was found to be moderately higher in slope than LIB samples(δ^(2)H=7.17×δ^(18)O+7.16).However,the slopes of both UIB and LIB river water lines closely approached the slope of GMWL and were consistent with the slope of IRB water line,which indicates similarity in contribution of water sources.The higher slope and intercept in UIB suggest that meteoric water sources contributed to streamflow viz.from snow/glacier with insignificant evapotranspiration,which is also validated by the scarce vegetation cover in the UIB.However,the lower slope and intercept in LIB suggest stream water contribution from significantly evaporated groundwater and precipitation with a complete homogenization of discharge coming from the UIB.Results substantiate that distinct isotopic signatures found in different stretches of the IRB and along the MIC are caused by variations in basin characteristics,hydro-meteorological processes,water mixing,and minor influence of anthropogenic variables.展开更多
The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms...The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms of the taxonomic composition or functional structure,remains relatively unexplored.A total of 22 sampling sites from two water layers(surface water,SW and 50-m layer water,FW)were collected in this area.The physiochemical parameters of waters,Synechococcus,and bacterial density,as well as the bacterioplankton community composition and distribution pattern,were analyzed.The nutrient concentrations of DIN,DIP,and DSi,Chl-a concentration,and the average abundance of heterobacteria in FW were higher than those in SW.However,temperature and the average abundance of Synechococcus and pico-eukaryotes were higher in SW.A total of 3269 OTUs were assigned,and 2123OTUs were commonly shared;moreover,similar alpha diversity patterns were observed in both SW and FW.The bacterioplankton community showed significantly obvious correlation with salinity,DIP,DIN,and Chl a in both SW and FW.Proteobacteria,Cyanobacteria,Bacteroidota,Actinobacteriota,and Firmicutes were the main phyla while Synechococcus_CC9902,Psychrobacter,and Sulfitobacter were the dominant genera in each sampling site.Most correlations that happened between the OTUs in the cooccurrence network were positive and inter-module.Higher edges and graph density were found in SW,indicating that more correlations occurred,and the community was more complex in SW.This study provided novel knowledge on the bacterioplankton community structure and the correlation characteristics in WSG.展开更多
On the basis of mixture theory of concentration of Helland-Hansen (Mao et al, 1964; Helland-Hansen, 1916), this paper takes salinity as a conservative factor in the process of dilution and mixture and selects by relat...On the basis of mixture theory of concentration of Helland-Hansen (Mao et al, 1964; Helland-Hansen, 1916), this paper takes salinity as a conservative factor in the process of dilution and mixture and selects by relating analysis the bydrological and chemical factors which are closely related to salinity. Then making use of the Q type multi-dimensions cluster analysis, we get the results that the water masses in the western Taiwan Strait include the follying: the coastal water along Fujian, Zhejiang and Guangdong Provinces, the diluted fresh water of Minjiang, Jiulong and Hanjiang Rivers; the mixing water in the Taiwan Strait; upwelling cold/warm water to the northwest of the Taiwan Shoal and the upwelling water to the east of Guangdong. The mixing weter in the Taiwan Strait during spring and summer is composed of a Kuroshio branch, the surface weter of the South China Sea, outal wier along Fujian, Zhejiang and Guangdong Provinces. While in autunm and winter, it is mixed up from Kuroshio branch, the shelf weter in the East China Sea, and the coastal water along Fujian, Zhejiang and Guangdong. There is an obvious seasonal change of growth and decline in these water masses.展开更多
Physical oceanography plays an important role in the formation of submarine sediments,and the distribution of nutriments and biocenoses in seamounts.The M4 seamount is located in the Caroline Island Ridge of the Weste...Physical oceanography plays an important role in the formation of submarine sediments,and the distribution of nutriments and biocenoses in seamounts.The M4 seamount is located in the Caroline Island Ridge of the Western Pacific Ocean.The physical properties around M4 seamount are preliminarily analyzed based on the in-situ data obtained in summer 2017 in Caroline M4 seamount and open-sourced data.We found that the water in the upper 200 m is controlled by the westward North Equatorial Current(NEC),while the water between 300-1000 m is dominated by the eastward North Equatorial Undercurrent(NEUC).The current direction fluctuates significantly below 300 m at upstream stations.At the same depth of the lee sides,the current direction changes with the distance from seamount.These are likely caused by the obstacle of M4 seamount.The calculation results show that there is an anticyclonic cap above M4 seamount caused by tidal rectification.Tidal currents in M4 seamount are squeezed by the topography and amplified,and the amplified tidal currents play a dominant role in M4 seamount.First,the circulation system generated by the interaction of the amplified tidal current and M4 seamount drives the upward/downward movement of the isotherms.Secondly,the thickness of the surface turbulent layer is changed with the tidal phase.Thirdly,high turbulent diffusivities are found in the bottom of M4 seamount,and these are most likely attributed to the turbulent mixing induced by the mutual effect between semidiurnal tidal currents and steep bathymetry.This article of physical oceanography provides scientific basis for further analysis of the distribution of biological community and deposition mechanism in M4 seamount.展开更多
Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope...Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Mostδ18O andδ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighterδ18O andδ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. Theδ18O values varied inversely withδ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values ofδ18O andδ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.展开更多
In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isoto...In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.展开更多
In terms of special geological conditions of the Western Route of South-to-North Water Transfer Project, the classification method for surrounding rocks is discussed by combining with the construction method of tunnel...In terms of special geological conditions of the Western Route of South-to-North Water Transfer Project, the classification method for surrounding rocks is discussed by combining with the construction method of tunnel boring machine (TBM). The classification standard of surrounding rocks is put forward on the basis of physical simulations and engineering practices. Damage, deformation and evolution of surrounding rocks induced by TBM excavation are discussed. Meanwhile, the long-term deformation mechanisms and stability of surrounding rocks are also studied. On this basis, a three-dimensional constitutive model for interbedded sandstone slate and a fiat shell-joint element-foundation system for calculating internal forces of segment lining are established. The deformation features of surrounding rocks of deep and steep interbedded sandstone slate and their influences on internal forces of segment lining are presented. Finally, the design methods of segment lining constructed in deep and steep flysch are proposed.展开更多
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa...Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.展开更多
-In this paper,by using ISODATA of fuzzy cluster,the water masses classification of the upper layer in the E-quatorial Western Pacific is carried out. On the basis of the degree of the membership in the obtained optim...-In this paper,by using ISODATA of fuzzy cluster,the water masses classification of the upper layer in the E-quatorial Western Pacific is carried out. On the basis of the degree of the membership in the obtained optima) classification matrix, the solid distribution of the detailed structure of water masses is made. The water of the upper layer,consisting of six water masses,may be divided into three layers,i, e. ,the surface,subsurface and intermediate layer. Besides analyzing the features of various water masses,a discussion on their distribution structure and formation mechanism is also made.展开更多
The existing high-resolution hydrographic data in the western tropical Pacilit; Ocean are used to explore the spatial distribution and primary characteristics of thermohaline intrusions in the thermocline. Statistics ...The existing high-resolution hydrographic data in the western tropical Pacilit; Ocean are used to explore the spatial distribution and primary characteristics of thermohaline intrusions in the thermocline. Statistics show that the vertical scales of intrusions are 20-40 m in the upper thermocline (22.0-26.0δ0) and 40-80 m in the lower thermocline (26.0-27.2δ0). In the upper thermocline, the most intensive intrusions exist at the equatorial front (EF) where north/sonth Pacilic water masses converge, anti Ihe westward spreading of the north Pacilic tropical waler (NPTW) in the Philippines Sea also produces patches of intrusions surrounding its high-salinity tongue. In the lower thermocline, intrusions are also strong at the tropical front (TF) which is the boundary between the north Pacilic subtropical/tropical waters. At the bottom of the thermocline (at about 27.0δ0), intrusions mainly exist near the western boundary, which are produced by intermediate water convergence through the advection of subthermocline western boundary Ilows. Most strikingly a "C"-shape distribution of intrusions at around 26.4δ0 is revealed, covering the vicinity of the EF the TE and the Mindanao Current (MC), i.e., tile western boundary pathway ol the norlh Pacilic subtrnpical cell (STC). Synoptic section analysis reveals that intrusions are more prominent on the warm/sally flank ot the fronts, implying more cross-front tongues of cold/fresh water. Among the intrusions, those at the EF are of best lateral coherence which implies a unique driving mechanism involving near-inertial velocity perturbations near the equator.展开更多
On the basis of the conductivity temperature depth(CTD)observation data off the coast of the Philippines(7.5°–18°N,130°E–the east coast of the Philippines)in the fall of 2005,the water mass distributi...On the basis of the conductivity temperature depth(CTD)observation data off the coast of the Philippines(7.5°–18°N,130°E–the east coast of the Philippines)in the fall of 2005,the water mass distribution,geostrophic flow field,and heat budget are examined.Four water masses are present:the North Pacific Tropical Surface Water,the North Pacific Sub-surface Water,the North Pacific Intermediate Water,and the Antarctic Intermediate Water(AAIW).The previous three corresponded with the North Equatorial Current(NEC),the Kuroshio Current(KC),and the Mindanao Current(MC),respectively.AAIW is the source of the Mindanao Undercurrent.The mass transport of NEC,KC,and MC is 58.7,15,and 27.95Sv,respectively(relative to 1500db).NEC can be balanced by the transport across the whole transect 18°N(31.81 Sv)and 7.5°N(26.11 Sv)but not simply by KC and MC.Direct calculation is used to study the heat flux.In sum,1.45PW heat is transported outwards the observed region,which is much more than that released from the ocean to the air at the surface(0.05PW).The net heat lost decreased the water temperature by 0.75℃each month on average,and the trend agreed well with the SST change.Vertically,the heat transported by the currents is mainly completed in the upper 500 m.展开更多
Conductivity-temperature-depth(CTD)data obtained during the 2010 La Nina winter and the 2012 normal winter,combined with concurrent Argo profiling float data,provide a quasi-synoptic description of the water mass di...Conductivity-temperature-depth(CTD)data obtained during the 2010 La Nina winter and the 2012 normal winter,combined with concurrent Argo profiling float data,provide a quasi-synoptic description of the water mass distributions and their variations in the far western equatorial Pacific Ocean.The water mass connection between the western Pacific and the east Indonesian seas is emphasized.Analysis indicates that the North Pacific Tropical Water(NPTW,S〉34.9)carried by the Mindanao Current southward and the South Pacific Tropical Water(SPTW,S〉35.1)from the southern hemisphere meet in the area.Observations suggest that the southward transport of the NPTW is stronger in 2010 than in 2012 due to enhanced advection of the Mindanao Current.The distribution of SPTW,which crosses the equator in the northwest direction and retroflects back to the interior Pacific Ocean,is found to retreat from 4°–5°N in2012 to 2°–3°N in 2010 La Ni?a peak in the 130°E section.A relatively fresh tropical subsurface water is identified in between the NPTW and the SPTW,moving eastward with the North Equatorial Countercurrent into the equatorial Pacific Ocean.However,the salinity maximum of this subsurface fresh water is found to decrease eastward,suggesting that the salinity maximum is generated either by strong diapycnal mixing or by isopycnal mixing of temporally entrained Indonesian sea water into the area.展开更多
It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin ...It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.展开更多
文摘The increasing demand for water and energy resources has led to widespread dam construction,particularly in ecologically sensitive regions like the Himalayan Range.This study focuses on the Uttarakhand state in the Western Himalayas,where hydroelectric projects(HEPs)have significantly altered river flow regimes.The research investigates the impact of flow alterations on the composition and structure of riparian vegetation in the Garhwal Himalayas,specifically analysing four rivers regulated by hydroelectric projects.Utilizing the paired-reach comparison method,control(undisturbed),diverted(downstream of barrage/dam),and altered flow conditions(downstream of water outlet)were examined.The research reveals diverse and unique riparian ecosystems,with 89 genera and 113 taxa identified,showcasing the dominance of families like Asteraceae and Lamiaceae.The study unveils the structural importance of key species such as Berberis asiatica and Artemisia nilagirica.The density,diversity,and richness of shrub and herb species vary significantly across flow conditions.Notably,altered flow conditions demonstrate resilience in vegetation structure,while diverted conditions exhibit decreased species richness and density.The study emphasizes the importance of nuanced environmental flow management for mitigating adverse effects on riparian biodiversity in the fragile Himalayan region.These findings contribute to the global discourse on dam impacts and riparian ecology,shedding light on the complexities of this dynamic relationship in a vulnerable ecosystem.
基金The National Natural Science Foundation of China under contract Nos 42106005,91958203,41676131,41876155.
文摘The classification of the springtime water mass has an important influence on the hydrography,regional climate change and fishery in the Taiwan Strait.Based on 58 stations of CTD profiling data collected in the western and southwestern Taiwan Strait during the spring cruise of 2019,we analyze the spatial distributions of temperature(T)and salinity(S)in the investigation area.Then by using the fuzzy cluster method combined with the T-S similarity number,we classify the investigation area into 5 water masses:the Minzhe Coastal Water(MZCW),the Taiwan Strait Mixed Water(TSMW),the South China Sea Surface Water(SCSSW),the South China Sea Subsurface Water(SCSUW)and the Kuroshio Branch Water(KBW).The MZCW appears in the near surface layer along the western coast of Taiwan Strait,showing low-salinity(<32.0)tongues near the Minjiang River Estuary and the Xiamen Bay mouth.The TSMW covers most upper layer of the investigation area.The SCSSW is mainly distributed in the upper layer of the southwestern Taiwan Strait,beneath which is the SCSUW.The KBW is a high temperature(core value of 26.36℃)and high salinity(core value of 34.62)water mass located southeast of the Taiwan Bank and partially in the central Taiwan Strait.
基金Supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2015ZX07206-006)
文摘Public participation is an important part of watershed water environment management. Via public participation, it could enhance public environmental awareness, mobilize multiple forces to reconcile the conflicts among multiple interest groups, supervise corporate environmental be-havior, and overcome the shortcomings of government unilateral decision-making. In this paper, the status quo of public participating in water envi-ronment control is summarized, and the existing problems of public participating in water environment control are analyzed. From the aspects of per-fecting legal system, perfecting water environment information disclosure system, expanding information communication channels, correctly guiding the development of environmental social organization, playing the supervision role of the people's congress and political consultative committee, and enriching the forms of publicity and education, the countermeasures and suggestions of public participating in water environment control are proposed, to perfect public participation mechanism, and scientifically and orderly impel comprehensive treatment of water environment.
基金the Science&Technology Basic Resources Investigation Program of China(No.2017TY100802)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19060401)the National Natural Science Foundation of China(No.91958103)。
文摘An investigation was carried out in the Y3 seamount area of the Western Pacific Ocean in December 2014,and the distribution of dissolved inorganic carbon(DIC)and its relationship with environmental factors in this area were explored.The results show that DIC concentration was higher in the adjacent waters of the Y3 seamount area,and the uplift of DIC isolines at the stations was close to the seamount.Meanwhile,interaction between the North Equatorial Current(NEC)and the Y3 seamount affected the DIC distribution,i.e.,the upwelling in the same direction of the NEC was obvious,resulting in a decreasing trend of average concentration of DIC in the 200 m water column from the top to the two sides in this direction but in the cross direction.The DIC concentration increased with the water depth increase,and its distribution was affected by various environmental factors.In the surface water,high temperature was a decisive factor for the decrease of the DIC concentration,but the photosynthesis of phytoplankton showing only a weak influence.In the North Pacific Tropic Water(NPTW),DIC production rate from organic matter decomposition was higher than that of DIC consumption by phytoplankton photosynthesis,leading to a continual increase of DIC.In the North Pacific Intermediate Water(NPIW),organic matter decomposition played a leading role in the increase of DIC.In the deep water,decomposition of organic matter weakened,and the dissolution of CaCO3 controlled the carbonate system,and DIC had the smallest variation range.
文摘The watershed of the Arbaa Ayacha River is an environment favorable to the development of the phenomena of water erosion as a result of its topographic features, lithological and climate. Therefore it has been the subject of evaluation of states erosive and of different causal factors of the risk of erosion by adaptation of cross-matrices based on directives PAP/RAC (Priority Actions Programme/Regional Activity Centre) [1]. This method is based on three approaches. The predictive approach provides a synthetic map of the distribution of the erosive states, with 51% of the basin subjected to high risks. The descriptive mapping of the various forms of erosion shows an enormous extension of stripping and sheet erosion (91%), superficial gullies and moderately deep gullies are growing in view of the gathering of runoffs from upstream to the downstream. The superposition of the results of both predictive and descriptive approaches gives a consolidated map PAP/RAC whose analysis shows that soils’ loss throughout the basin is proportional to the increase of the major factors of water erosion according to the level of importance: The topographical factor—soil types—slope-lithology following a positive linear relationship, while the order of the parameters that are negative linear relationship is density of vegetation cover-land cover [2]. This same map gives maximal losses corresponding mainly to friable lithologic natural areas of badlands at the center of the basin which correspond to Tensift’s terraces [3]. In the downstream basin, the combined effect of deep ravines and banks sapements promotes high risk while in the upstream, the localized solifluxions and gravity screens participate in serious losses.
文摘In the sea area west of the middle line of Taiwan Straits, 116°40′~120°30′E, 22°22.9′~25°43′N, four cruises of comprehensive survey were conducted by the Third Institute of Oceanography, State Oceanic Administration, from May, 1984 to February, 1985. The data concerned were taken from the quantitative samples obtained by using large-sized standard zooplankton nets, while the values adopted such as hydrological and chemical data of the various stations were from the average values of the field data of each one-meter layer.
基金the Department of Science and Technology for the INSPIRE PhD fellowshipsupported by the FIG-100779 grant and IIT Roorkee Institute Fellowship to N Raithe Department of Science and Technology through INSPIRE fellowship(IF170907)scheme(grant No.7053-106-044-428)to A Jahan。
文摘The Indus river basin(IRB)is one of the most depleted water basins globally,having significant challenges for its water sector.Monitoring of stable isotope composition(δ^(18)O and δ^(2)H)across IRB is a critical aspect that can provide deeper insights for investigating complex hydrological processes.This work analyses the spatial pattern of the isotopic signature using a comprehensive compilation of available datasets of the Global Network of Isotopes in River(GNIR)and Global Network of Isotopes in Precipitation(GNIP),along with the previously published isotopic studies in the Indus basin.Additionally,this work provides a detailed comparison of the isotopic signature of the Upper Indus Basin(UIB),and Lower Indus Basin(LIB).The IRBs waterline was found to beδ^(2)H=7.89×δ^(18)O+13.51,which shows a close similarity with the Global Meteoric Water Line(GMWL),indicating the meteoric origin of the water with insignificant secondary evaporation prevailing across the basin.The Main Indus Channel(MIC)river water line(δ^(2)H=8.88×δ^(18)O+26.05)indicates a major contribution from the meteoric origin(precipitation/rain)of water with minimal effect of evaporation processes.The water line for UIB samples,(δ^(2)H=7.88×δ^(18)O+11.94)was found to be moderately higher in slope than LIB samples(δ^(2)H=7.17×δ^(18)O+7.16).However,the slopes of both UIB and LIB river water lines closely approached the slope of GMWL and were consistent with the slope of IRB water line,which indicates similarity in contribution of water sources.The higher slope and intercept in UIB suggest that meteoric water sources contributed to streamflow viz.from snow/glacier with insignificant evapotranspiration,which is also validated by the scarce vegetation cover in the UIB.However,the lower slope and intercept in LIB suggest stream water contribution from significantly evaporated groundwater and precipitation with a complete homogenization of discharge coming from the UIB.Results substantiate that distinct isotopic signatures found in different stretches of the IRB and along the MIC are caused by variations in basin characteristics,hydro-meteorological processes,water mixing,and minor influence of anthropogenic variables.
基金Supported by the National Key Research and Development Program of China(No.2019YFD0901401)the Natural Science Foundation of Shandong Province(No.ZR202102280248)+1 种基金the National Natural Science Foundation of China(No.81900630)the Outstanding Youth Project of Yunnan Provincial Department of Science and Technology(No.2019F1019)。
文摘The Western Subarctic Gyre(WSG)is one of the two gyre-systems in the subarctic North Pacific known for high nutrient and low-chlorophyll waters.However,the bacterioplankton in marine water of this area,either in terms of the taxonomic composition or functional structure,remains relatively unexplored.A total of 22 sampling sites from two water layers(surface water,SW and 50-m layer water,FW)were collected in this area.The physiochemical parameters of waters,Synechococcus,and bacterial density,as well as the bacterioplankton community composition and distribution pattern,were analyzed.The nutrient concentrations of DIN,DIP,and DSi,Chl-a concentration,and the average abundance of heterobacteria in FW were higher than those in SW.However,temperature and the average abundance of Synechococcus and pico-eukaryotes were higher in SW.A total of 3269 OTUs were assigned,and 2123OTUs were commonly shared;moreover,similar alpha diversity patterns were observed in both SW and FW.The bacterioplankton community showed significantly obvious correlation with salinity,DIP,DIN,and Chl a in both SW and FW.Proteobacteria,Cyanobacteria,Bacteroidota,Actinobacteriota,and Firmicutes were the main phyla while Synechococcus_CC9902,Psychrobacter,and Sulfitobacter were the dominant genera in each sampling site.Most correlations that happened between the OTUs in the cooccurrence network were positive and inter-module.Higher edges and graph density were found in SW,indicating that more correlations occurred,and the community was more complex in SW.This study provided novel knowledge on the bacterioplankton community structure and the correlation characteristics in WSG.
文摘On the basis of mixture theory of concentration of Helland-Hansen (Mao et al, 1964; Helland-Hansen, 1916), this paper takes salinity as a conservative factor in the process of dilution and mixture and selects by relating analysis the bydrological and chemical factors which are closely related to salinity. Then making use of the Q type multi-dimensions cluster analysis, we get the results that the water masses in the western Taiwan Strait include the follying: the coastal water along Fujian, Zhejiang and Guangdong Provinces, the diluted fresh water of Minjiang, Jiulong and Hanjiang Rivers; the mixing water in the Taiwan Strait; upwelling cold/warm water to the northwest of the Taiwan Shoal and the upwelling water to the east of Guangdong. The mixing weter in the Taiwan Strait during spring and summer is composed of a Kuroshio branch, the surface weter of the South China Sea, outal wier along Fujian, Zhejiang and Guangdong Provinces. While in autunm and winter, it is mixed up from Kuroshio branch, the shelf weter in the East China Sea, and the coastal water along Fujian, Zhejiang and Guangdong. There is an obvious seasonal change of growth and decline in these water masses.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Nos.XDA19060401,XDB42010203,XDA23050503)the Science and Technology Basic Resources Investigation Program of China (No.2017FY100802)。
文摘Physical oceanography plays an important role in the formation of submarine sediments,and the distribution of nutriments and biocenoses in seamounts.The M4 seamount is located in the Caroline Island Ridge of the Western Pacific Ocean.The physical properties around M4 seamount are preliminarily analyzed based on the in-situ data obtained in summer 2017 in Caroline M4 seamount and open-sourced data.We found that the water in the upper 200 m is controlled by the westward North Equatorial Current(NEC),while the water between 300-1000 m is dominated by the eastward North Equatorial Undercurrent(NEUC).The current direction fluctuates significantly below 300 m at upstream stations.At the same depth of the lee sides,the current direction changes with the distance from seamount.These are likely caused by the obstacle of M4 seamount.The calculation results show that there is an anticyclonic cap above M4 seamount caused by tidal rectification.Tidal currents in M4 seamount are squeezed by the topography and amplified,and the amplified tidal currents play a dominant role in M4 seamount.First,the circulation system generated by the interaction of the amplified tidal current and M4 seamount drives the upward/downward movement of the isotherms.Secondly,the thickness of the surface turbulent layer is changed with the tidal phase.Thirdly,high turbulent diffusivities are found in the bottom of M4 seamount,and these are most likely attributed to the turbulent mixing induced by the mutual effect between semidiurnal tidal currents and steep bathymetry.This article of physical oceanography provides scientific basis for further analysis of the distribution of biological community and deposition mechanism in M4 seamount.
基金The National Natural Science Foundation of China under contract Nos 41030859,41211120173,CHINARE2015-03-02 and IC201105the Geological Investigation Project of China Geological Survey Nos 12120113006200 and 1212011120044
文摘Multiproxy investigations have been performed on Core 08P23 collected from the Chukchi Plateau, the western Arctic Ocean, during the Third Chinese National Arctic Expedition. The core was dated back to Ma-rine Isotope Stage (MIS) 3 by a combination of Accelerator Mass Spectrometric (AMS) carbon-14 dating and regional core correlation. A total of five prominent ice-rafted detritus (IRD) events were recognized in MIS 2 and MIS 3. The IRD sources in MIS 3 are originated from vast carbonate rock outcrops of the Canadian Arctic Archipelago and clastic quartz in MIS 2 may have a Eurasian origin. Mostδ18O andδ13C values of Neogloboquadrina pachyderma (sinistral) (Nps) in Core 08P23 are lighter than the average values of surface sediments. The lighterδ18O andδ13C values of Nps in the two brown layers in MIS 1 and MIS 3 were resulted from meltwater events; and those in the gray layers in MIS 3 were caused by the enhanced sea ice formation. Theδ18O values varied inversely withδ13C in MIS 2 indicate that the study area was covered by thick sea ice or ice sheet with low temperature and little meltwater, which prevented the biological productivity and sea-atmosphere exchange, as well as water mass ventilation. The covaried light values ofδ18O andδ13C in MIS 1 and MIS 3 were resulted from meltwater and/or brine injection.
基金financially supported by the National Natural Science Foundation of China(Grant Nos. 41872093, 41502096) Foundation of Qinghai Science & Technology Department (2016-ZJ-715) One-Thousand InnovativeTalent Project of Qinghai Province (Grant to QS Fan)
文摘In this study, nineteen brine samples from the Qarhan Salt Lake(QSL) in western China were collected and analyzed for boron(B) and chlorine(Cl) concentrations, total dissolved solids(TDS), pH values and stable B isotopic compositions. The B concentrations and δ^(11) B values of brines in the QSL range from 51.6 mg/L to138.4 mg/L, and from +9.32& to +13.08&, respectively. By comparison of B concentrations and TDS of brines in QSL with evaporation paths of brackish water, we found that B enrichment of brines primarily results from strong evaporation and concentration of Qarhan lake water. Combining with comparisons of B concentrations, TDS, p H values and δ^(11) B values of brines, previously elemental ratios(K/Cl, Mg/Cl, Ca/Cl, B/Cl) and δ^(11) B values of halite from a sediment core(ISL1 A), we observe good correlations between B concentrations and TDS, TDS and pH values, pH and δ^(11) B values of brines, which demonstrate that higher B concentrations and more positive δ^(11) B values of halite indicate higher salinity of the Qarhan paleolake water as well as drier paleoclimatic conditions. Based on this interpretation of the δ^(11) B values of halite in core ISL1 A, higher salinity of the Qarhan paleolake occurred during two intervals, around 46-34 ka and26-9 ka, which are almost coincident with the upper and lower halite-dominated salt layers in core ISL1 A,drier climate phases documented from the δ^(18) O record of carbonate in core ISL1 A and the paleomoisture record in monsoonal central Asia, and a higher solar insolation at 30°N. These results demonstrate that the δ^(11) B values of halite in the arid Qaidam Basin could be regarded as a new proxy for reconstructing the salinity record of paleolake water as well as paleoclimate conditions.
基金Supported by the National Key Technology R&D Program in the 11th Five-year Plan of China (2006BAB04A06)
文摘In terms of special geological conditions of the Western Route of South-to-North Water Transfer Project, the classification method for surrounding rocks is discussed by combining with the construction method of tunnel boring machine (TBM). The classification standard of surrounding rocks is put forward on the basis of physical simulations and engineering practices. Damage, deformation and evolution of surrounding rocks induced by TBM excavation are discussed. Meanwhile, the long-term deformation mechanisms and stability of surrounding rocks are also studied. On this basis, a three-dimensional constitutive model for interbedded sandstone slate and a fiat shell-joint element-foundation system for calculating internal forces of segment lining are established. The deformation features of surrounding rocks of deep and steep interbedded sandstone slate and their influences on internal forces of segment lining are presented. Finally, the design methods of segment lining constructed in deep and steep flysch are proposed.
基金funded by 948 Program of Ministry of Agriculture, China (2006-G52)
文摘Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI.
文摘-In this paper,by using ISODATA of fuzzy cluster,the water masses classification of the upper layer in the E-quatorial Western Pacific is carried out. On the basis of the degree of the membership in the obtained optima) classification matrix, the solid distribution of the detailed structure of water masses is made. The water of the upper layer,consisting of six water masses,may be divided into three layers,i, e. ,the surface,subsurface and intermediate layer. Besides analyzing the features of various water masses,a discussion on their distribution structure and formation mechanism is also made.
基金The National Natural Science Foundation of China under contract No.40890152the National Basic Research Program of China under contract No.2012CB417401
文摘The existing high-resolution hydrographic data in the western tropical Pacilit; Ocean are used to explore the spatial distribution and primary characteristics of thermohaline intrusions in the thermocline. Statistics show that the vertical scales of intrusions are 20-40 m in the upper thermocline (22.0-26.0δ0) and 40-80 m in the lower thermocline (26.0-27.2δ0). In the upper thermocline, the most intensive intrusions exist at the equatorial front (EF) where north/sonth Pacilic water masses converge, anti Ihe westward spreading of the north Pacilic tropical waler (NPTW) in the Philippines Sea also produces patches of intrusions surrounding its high-salinity tongue. In the lower thermocline, intrusions are also strong at the tropical front (TF) which is the boundary between the north Pacilic subtropical/tropical waters. At the bottom of the thermocline (at about 27.0δ0), intrusions mainly exist near the western boundary, which are produced by intermediate water convergence through the advection of subthermocline western boundary Ilows. Most strikingly a "C"-shape distribution of intrusions at around 26.4δ0 is revealed, covering the vicinity of the EF the TE and the Mindanao Current (MC), i.e., tile western boundary pathway ol the norlh Pacilic subtrnpical cell (STC). Synoptic section analysis reveals that intrusions are more prominent on the warm/sally flank ot the fronts, implying more cross-front tongues of cold/fresh water. Among the intrusions, those at the EF are of best lateral coherence which implies a unique driving mechanism involving near-inertial velocity perturbations near the equator.
基金supported by the National Natural Science Foundation of China (Nos. 41676004, 41506034, 41376001, 41376038, 41806123, 41430963)the Basic Scientific Fund for National Public Research Institutes of China (No. GY0213G02)+1 种基金the National Major Scientific Research Program (No. 2015CB954300)the National Science and Technology Major Project (No. 2016ZX05057015)
文摘On the basis of the conductivity temperature depth(CTD)observation data off the coast of the Philippines(7.5°–18°N,130°E–the east coast of the Philippines)in the fall of 2005,the water mass distribution,geostrophic flow field,and heat budget are examined.Four water masses are present:the North Pacific Tropical Surface Water,the North Pacific Sub-surface Water,the North Pacific Intermediate Water,and the Antarctic Intermediate Water(AAIW).The previous three corresponded with the North Equatorial Current(NEC),the Kuroshio Current(KC),and the Mindanao Current(MC),respectively.AAIW is the source of the Mindanao Undercurrent.The mass transport of NEC,KC,and MC is 58.7,15,and 27.95Sv,respectively(relative to 1500db).NEC can be balanced by the transport across the whole transect 18°N(31.81 Sv)and 7.5°N(26.11 Sv)but not simply by KC and MC.Direct calculation is used to study the heat flux.In sum,1.45PW heat is transported outwards the observed region,which is much more than that released from the ocean to the air at the surface(0.05PW).The net heat lost decreased the water temperature by 0.75℃each month on average,and the trend agreed well with the SST change.Vertically,the heat transported by the currents is mainly completed in the upper 500 m.
基金Supported by the Chinese Academy of Sciences(No.XDA11010205)the National Natural Science Foundation of China(Nos.41421005,U1606402,41720104008,41376032)+1 种基金the Qingdao Marine Science National Laboratory(Nos.2016ASKJ04,2016SAKJ12)the Shandong Provincial Project(No.2014GJJS0101)
文摘Conductivity-temperature-depth(CTD)data obtained during the 2010 La Nina winter and the 2012 normal winter,combined with concurrent Argo profiling float data,provide a quasi-synoptic description of the water mass distributions and their variations in the far western equatorial Pacific Ocean.The water mass connection between the western Pacific and the east Indonesian seas is emphasized.Analysis indicates that the North Pacific Tropical Water(NPTW,S〉34.9)carried by the Mindanao Current southward and the South Pacific Tropical Water(SPTW,S〉35.1)from the southern hemisphere meet in the area.Observations suggest that the southward transport of the NPTW is stronger in 2010 than in 2012 due to enhanced advection of the Mindanao Current.The distribution of SPTW,which crosses the equator in the northwest direction and retroflects back to the interior Pacific Ocean,is found to retreat from 4°–5°N in2012 to 2°–3°N in 2010 La Ni?a peak in the 130°E section.A relatively fresh tropical subsurface water is identified in between the NPTW and the SPTW,moving eastward with the North Equatorial Countercurrent into the equatorial Pacific Ocean.However,the salinity maximum of this subsurface fresh water is found to decrease eastward,suggesting that the salinity maximum is generated either by strong diapycnal mixing or by isopycnal mixing of temporally entrained Indonesian sea water into the area.
文摘It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.