It is well known that robustness, fragility, and security are three important criteria of image hashing; however how to build a system that can strongly meet these three criteria is still a challenge. In this paper, a...It is well known that robustness, fragility, and security are three important criteria of image hashing; however how to build a system that can strongly meet these three criteria is still a challenge. In this paper, a content-based image hashing scheme using wave atoms is proposed, which satisfies the above criteria. Compared with traditional transforms like wavelet transform and discrete cosine transform (DCT), wave atom transform is adopted for the sparser expansion and better characteristics of texture feature extraction which shows better performance in both robustness and fragility. In addition, multi-frequency detection is presented to provide an application-defined trade-off. To ensure the security of the proposed approach and its resistance to a chosen-plaintext attack, a randomized pixel modulation based on the Rdnyi chaotic map is employed, combining with the nonliner wave atom transform. The experimental results reveal that the proposed scheme is robust against content-preserving manipulations and has a good discriminative capability to malicions tampering.展开更多
Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicate...Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data.展开更多
Recently, a configuration using atomic interferometers (AIs) had been sug- gested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was als...Recently, a configuration using atomic interferometers (AIs) had been sug- gested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was also put forward, in order to reduce the effect of shot noise and laser frequency noise. We use a sensitivity function to analyze all possible configurations of the new AI and to distinguish how many mo- menta are transferred in a specific configuration. By analyzing the new configuration, we further explore a detection scheme for gravitational waves, in particular, that ame- liorates laser frequency noise. We find that the amelioration occurs in such a scheme, but novelly, in some cases, the frequency noise can be canceled completely by using a proper data processing method.展开更多
We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results ...We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.展开更多
Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/...Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/solitonic atoms. It leads to a novel ‘atomic interpretation’ where wave functions become the superpositions of localized Atomic Wave Functions, which can also describe collapsed wave functions, represent Gaussians, uphold Heisenberg’s uncertainly principle, and a more generic concept of Atomic Harmonic Oscillator. Atomic Functions can solve the boundary wave function discontinuity problem for particle-in-a-box and other solutions by introducing atomic wave packets. It highlights some limitations of the Schrödinger equation, yielding harmonic representations that may not be flexible enough to satisfy complex boundary conditions. The theory follows more generic research on Atomic Spacetime, quantum gravity, and field theories to derive common mathematical blocks of unified fields similar to loop quantum gravity and strings theories.展开更多
The interaction between an atomic beam of two-level atoms and a standing wave light field has been studied by the exact solution of a time-dependent quantum system developed recently. When the initial atomic state is ...The interaction between an atomic beam of two-level atoms and a standing wave light field has been studied by the exact solution of a time-dependent quantum system developed recently. When the initial atomic state is choosen to be ground, we find that with the limit of zero detuning the atoms will oscillate between the upper and the lower levels with a decaying amplitude. The most interesting result obtained in this paper is when the initial atomic state is a particular superposition of the two levels, now the system does not oscillate at any time.展开更多
文摘It is well known that robustness, fragility, and security are three important criteria of image hashing; however how to build a system that can strongly meet these three criteria is still a challenge. In this paper, a content-based image hashing scheme using wave atoms is proposed, which satisfies the above criteria. Compared with traditional transforms like wavelet transform and discrete cosine transform (DCT), wave atom transform is adopted for the sparser expansion and better characteristics of texture feature extraction which shows better performance in both robustness and fragility. In addition, multi-frequency detection is presented to provide an application-defined trade-off. To ensure the security of the proposed approach and its resistance to a chosen-plaintext attack, a randomized pixel modulation based on the Rdnyi chaotic map is employed, combining with the nonliner wave atom transform. The experimental results reveal that the proposed scheme is robust against content-preserving manipulations and has a good discriminative capability to malicions tampering.
基金sponsored by National Natural Science Foundation of China(No.41672325,41602334)National Key Research and Development Program of China(No.2017YFC0601505).
文摘Many different effective reflection information are often contaminated by exterior and random noise which concealed in the seismic data.Traditional single or fixed transform is not suit for exploiting their complicated characteristics and attenuating the noise.Recent years,a novel method so-called morphological component analysis(MCA)is put forward to separate different geometrical components by amalgamating several irrelevance transforms.According to study the local singular and smooth linear components characteristics of seismic data,we propose a method of suppressing noise by integrating with the advantages of adaptive K-singular value decomposition(K-SVD)and wave atom dictionaries to depict the morphological features diversity of seismic signals.Numerical results indicate that our method can dramatically suppress the undesired noises,preserve the information of geologic body and geological structure and improve the signal-to-noise ratio of the data.We also demonstrate the superior performance of this approach by comparing with other novel dictionaries such as discrete cosine transform(DCT),undecimated discrete wavelet transform(UDWT),or curvelet transform,etc.This algorithm provides new ideas for data processing to advance quality and signal-to-noise ratio of seismic data.
基金Supported by the National Natural Science Foundation of China
文摘Recently, a configuration using atomic interferometers (AIs) had been sug- gested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was also put forward, in order to reduce the effect of shot noise and laser frequency noise. We use a sensitivity function to analyze all possible configurations of the new AI and to distinguish how many mo- menta are transferred in a specific configuration. By analyzing the new configuration, we further explore a detection scheme for gravitational waves, in particular, that ame- liorates laser frequency noise. We find that the amelioration occurs in such a scheme, but novelly, in some cases, the frequency noise can be canceled completely by using a proper data processing method.
文摘We study behavior of an atomic wave packet in a circularly polarized electromagnetic wave, and particularly calculate the atomic inversion of the wave packet. A general method of calculation is presented. The results are interesting. For example, if the wave packet is very narrow or/and the interaction is very strong, no matter the atom is initially in its ground state or excited state, the atomic inversion approaches zero as time approaches infinity. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is an even function, then the atomic inversion equals zero at any time.
文摘Based on theorems, the Atomic AString Functions theory, evolving since the 1970s, is introduced into Quantum Mechanics to represent a wave function via the shifts and stretches of smooth finite Atomic Function pulses/solitonic atoms. It leads to a novel ‘atomic interpretation’ where wave functions become the superpositions of localized Atomic Wave Functions, which can also describe collapsed wave functions, represent Gaussians, uphold Heisenberg’s uncertainly principle, and a more generic concept of Atomic Harmonic Oscillator. Atomic Functions can solve the boundary wave function discontinuity problem for particle-in-a-box and other solutions by introducing atomic wave packets. It highlights some limitations of the Schrödinger equation, yielding harmonic representations that may not be flexible enough to satisfy complex boundary conditions. The theory follows more generic research on Atomic Spacetime, quantum gravity, and field theories to derive common mathematical blocks of unified fields similar to loop quantum gravity and strings theories.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 10075302.
文摘The interaction between an atomic beam of two-level atoms and a standing wave light field has been studied by the exact solution of a time-dependent quantum system developed recently. When the initial atomic state is choosen to be ground, we find that with the limit of zero detuning the atoms will oscillate between the upper and the lower levels with a decaying amplitude. The most interesting result obtained in this paper is when the initial atomic state is a particular superposition of the two levels, now the system does not oscillate at any time.