期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparative Study on Two Methods for Measuring Wave Velocity Change of Crustal Medium Based on Large Volume Airgun Excitation Data
1
作者 YE Beng CAO Wenzhong +2 位作者 HUO Yuanhang CHEN Jia LI Xiaobin 《Earthquake Research in China》 CSCD 2019年第4期584-595,共12页
This paper proposes the application of dynamic programming method to calculate the relative change of wave velocities and compares its similarities and differences with the cross-correlation delay estimation method ba... This paper proposes the application of dynamic programming method to calculate the relative change of wave velocities and compares its similarities and differences with the cross-correlation delay estimation method based on interference.The results show that:①the trend of wave velocities obtained by cross-correlation method and dynamic programming method are consistent.Besides,it is considered that the calculated result using cross-correlation delay method is reliable.②Compared with the cross-correlation delay method,the calculated result of the dynamic programming method has a magnifying effect and is more sensitive to small disturbances.③Under ideal conditions,the wave velocity change trend calculated by P-wave and S-wave phase should be consistent.In addition,the cross-correlation delay method is used to calculate the wave velocity change.Under appropriate conditions,the process of recovering from the suspected wave velocity before the M_L1.1 earthquake near the airgun source can be observed. 展开更多
关键词 Artificial source Airgun source CROSS-CORRELATION wave velocity change Dynamic programming
下载PDF
Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective 被引量:9
2
作者 Qing-Yu Wang HuaJian Yao 《Earth and Planetary Physics》 CSCD 2020年第5期532-542,共11页
Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the f... Over the past two decades,the development of the ambient noise cross-correlation technology has spawned the exploration of underground structures.In addition,ambient noise-based monitoring has emerged because of the feasibility of reconstructing the continuous Green’s functions.Investigating the physical properties of a subsurface medium by tracking changes in seismic wave velocity that do not depend on the occurrence of earthquakes or the continuity of artificial sources dramatically increases the possibility of researching the evolution of crustal deformation.In this article,we outline some state-of-the-art techniques for noise-based monitoring,including moving-window cross-spectral analysis,the stretching method,dynamic time wrapping,wavelet cross-spectrum analysis,and a combination of these measurement methods,with either a Bayesian least-squares inversion or the Bayesian Markov chain Monte Carlo method.We briefly state the principles underlying the different methods and their pros and cons.By elaborating on some typical noisebased monitoring applications,we show how this technique can be widely applied in different scenarios and adapted to multiples scales.We list classical applications,such as following earthquake-related co-and postseismic velocity changes,forecasting volcanic eruptions,and tracking external environmental forcing-generated transient changes.By monitoring cases having different targets at different scales,we point out the applicability of this technology for disaster prediction and early warning of small-scale reservoirs,landslides,and so forth.Finally,we conclude with some possible developments of noise-based monitoring at present and summarize some prospective research directions.To improve the temporal and spatial resolution of passive-source noise monitoring,we propose integrating different methods and seismic sources.Further interdisciplinary collaboration is indispensable for comprehensively interpreting the observed changes. 展开更多
关键词 ambient noise correlation noise-based monitoring seismic wave velocity changes the evolution of physical properties of the crust
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部