A spatial array of wave gauges installed on an observatoion platform has been designed and arranged to measure the local features of winter monsoon directional waves off Taishi coast of Taiwan. A new method, named the...A spatial array of wave gauges installed on an observatoion platform has been designed and arranged to measure the local features of winter monsoon directional waves off Taishi coast of Taiwan. A new method, named the Bayesian Parameter Estimation Method(BPEM), is developed and adopted to determine the main direction and the directional spreading parameter of directional spectra. ne BPEM could be considered as a regression analysis to find the maximum joint probability of parameters, which best approximates the observed data from the Bayesian viewpoint. The result of the analysis of field wave data demonstrates the highly dependency of the characteristics of normalized directional spreading on the wave age. The Mitsuyasu type empirical formula of directional spectrum is therefore modified to be representative of monsoon wave field. Moreover, it is suggested that S-max could be expressed as a function of wave steepness. The values of S-max decrease with increasing steepness. Finally, a local directional spreading model, which is simple to be utilized in engineering practice, is proposed.展开更多
A numerical model is proposed based on the time domain solution of the Boussinesq equations using the finite element method in this paper. The typical wave diffraction through a breakwater gap is simulated to validate...A numerical model is proposed based on the time domain solution of the Boussinesq equations using the finite element method in this paper. The typical wave diffraction through a breakwater gap is simulated to validate the numerical model. Good agreements are obtained between the numerical and experimental results. Further, the effects of the wave directionality on the wave diffraction through a breakwater gap and the wave transformation on a planar bathymetry are numerically investigated. The results show that the wave directional spreading has a significant effect on the wave diffraction and refraction. However, when the directional spreading parameter s is larger than around 40, the effects of the wave directional spreading on the wave transformation can be neglected in engineering applications.展开更多
Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitati...Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitations.Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future.For this study,the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum.The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified.To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR,the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system.In the process of simulation,the sea surface,backscattering signal,modulation spectrum and the estimated wave height spectrum are simulated in each look direction.Directional wave spectrum are measured based on the simulated observations from 0 ? to 360 ? .From the estimated wave spectrum,it has an 180 ? ambiguity like SAR,but it has no special high wave number cut off in all the direction.Finally,the estimated spectrum is compared with the input one in terms of the dominant wave wavelength,direction and SWH and the results are promising.The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties.Moreover,it indicates satellite-based RAR basically can measure waves that SAR can measure.展开更多
This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif...This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif ferent sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coeffi cient is estimated using an ef fective signifi cant wave height(SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coeffi cient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as fi rst guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length(PWL), and peak wave direction(PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR(ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting(ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.展开更多
Pierson- Moskowitz Spectrum, JONSWAP Spectrum as well as Bretschneider- Mitsuyasu Spectrum are used in this paper for analyzing the influence of wave energy directional spread on refraction of wave spectrum due to bot...Pierson- Moskowitz Spectrum, JONSWAP Spectrum as well as Bretschneider- Mitsuyasu Spectrum are used in this paper for analyzing the influence of wave energy directional spread on refraction of wave spectrum due to both current and topography of sea bed. The author's calculation indicates that such kind influence on the characteristic value of wave height as well as the average direction of wave energy propagation can not be ignored.展开更多
The observation and estimation of directional spectra of sea waves is one of the essential subjects of study of oceanic dynamics. On the basis of the irregular linear wave theory, estimation methods for i/UV, PUV and ...The observation and estimation of directional spectra of sea waves is one of the essential subjects of study of oceanic dynamics. On the basis of the irregular linear wave theory, estimation methods for i/UV, PUV and VV directional wave spectra are derived. By using ij and PUV data measured in-situ, directional wave spectra are estimated, meanwhile the virtues and defects of various spectra are comparied. This method provide a basis for the observations of sea waves.展开更多
Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function wa...Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function was obtained by calibration of the magnitudes of the gray values of the images against the results of wave gauge measurements for directional waves. With this transfer function, wave heights for regular waves were deduced. It is shown that the average relative errors are smaller than 16% for both unidirectional and directional waves.展开更多
The way to use the least-mean-square (LMS) arithmetic to cancel the direct wave for a passive radar system is introduced. The model of the direct wave is deduced. By using the LMS adaptive FIR filter, the software sol...The way to use the least-mean-square (LMS) arithmetic to cancel the direct wave for a passive radar system is introduced. The model of the direct wave is deduced. By using the LMS adaptive FIR filter, the software solution for FM passive radar system is developed instead of the hardware consumption of the existent experiment system of passive radar. Further more some simulative results are given. The simulative results indicate that using LMS arithmetic to cancel the direct wave is effective.展开更多
An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum...An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum peak periods range from 1.19 s to 1.81 s. Incident wave directions relative to the centre line of the multiple caissons are from 0° to 22.5°. The spacing between caissons ranges from 2 to 3 times that of the width of the caisson. The effects of these parameters on the wave forces of both the perforated and non-perforated caissons were compared and analyzed. It was found that the perforated caisson can reduce wave forces, especially in the transverse direction. Furthermore, the relative interval and incident wave direction have significant effects on the wave forces in the case of multiple caissons.展开更多
This paper proposes the retrieval method of ocean wave spectrum for airborne radar observations at small incidence angles, which is slightly modified from the method developed by Hauser. Firstly, it makes use of integ...This paper proposes the retrieval method of ocean wave spectrum for airborne radar observations at small incidence angles, which is slightly modified from the method developed by Hauser. Firstly, it makes use of integration method to estimate total mean square slope instead of fitting method, which aims to reduce the affects of fluctuations superposed on normalized radar cross-section by integration. Secondly, for eliminating the noise spectrum contained in signal spectrum, the method considers the signal spectrum in certain look direction without any long wave components as the assumed noise spectrum, which would be subtracted from signal spectrum in any look direction for linear wave spectrum retrieval. Estimated v from the integration method are lower than the one from fitting method and have a standard deviation of 0.004 between them approximately. The assumed noise spectrum energy almost has no big variations along with the wave number and is slightly lower to the high wave number part of signal spectrum in any look direction, which follows that the assumption makes sense. The retrieved directional spectra are compared with the buoy records in terms of peak wavelength, peak direction and the significant wave height. Comparisons show that the retrieved peak wavelength and significant wave height are slightly higher than the buoy records but don't differs significantly (error less than 10%). For peak direction, the swell waves in first case basically propagate in the wind direction 6 hours ago and the wind-generated waves in second case also propagate in the wind direction, but the 180° ambiguity remains. Results show that the modified method can carry out the retrieval of directional wave spectrum.展开更多
Satellite remote sensing technique offers a wide range of information, and is one of the tools for ocean wave observation. This paper discusses the limitations of Synthetic Aperture Radar (SAR) images in wave field an...Satellite remote sensing technique offers a wide range of information, and is one of the tools for ocean wave observation. This paper discusses the limitations of Synthetic Aperture Radar (SAR) images in wave field analysis. It is found that the wave field analysis is affected by the gray value distribution of image and the relationship between satellite travel and wave propagation directions. Since human activities and coastal engineering are performed in nearshore areas, some issues are discussed for nearshore SAR image analysis. Several case studies show that the wave parameters estimated from nearshore SAR images are quite different from in situ measurements, suggesting that the wave information derived from nearshore SAR images cannot appropriately represent the wave characteristics. One of the reasons is that the wave field is non homogeneous in the nearshore area.展开更多
Effects of currents on winter wind waves in the tide-dominated Qiongzhou Strait(QS)were numerically evaluated via employing the coupled ocean-atmosphere-wave-sediment transport(COAWST)modeling system.Validations showe...Effects of currents on winter wind waves in the tide-dominated Qiongzhou Strait(QS)were numerically evaluated via employing the coupled ocean-atmosphere-wave-sediment transport(COAWST)modeling system.Validations showed satisfactory model performance in simulating the intense tidal currents in the QS.Different effects of sea level variations and tidal currents on waves were examined under the maximum eastward(METC)and westward(MWTC)tidal currents.In the east entrance area of the QS,the positive sea levels under the MWTC deepened the water depth felt by waves,benefiting the further propagation of wave energy into the inner strait and causing increased wave height.The METC and the MWTC could both enhance the wave height in the east entrance area of the QS,mainly through current-induced convergence and wavenumber shift,respectively.By current-induced refraction,the METC(MWTC)triggered counterclockwise(clockwise)rotation in peak wave directions in the northern part of the QS while clockwise(counterclockwise)rotation in the southern part.展开更多
The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave h...The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave headings is presented.The continuous mating operation using the rapid transfer technique was experimentally simulated with the assistance of the jacking system and the ballast system.In the continuous transfer modeling,the topsides loads were transferred onto the jacket by several consecutive steps,including the first rapid jack-down for the 30%loads,continuous 30%−70%load transfer and the second repaid jack-down for the remaining 30%loads.Motions of the barge and the topsides as well as loads on the Deck Support Unite(DSU)and the Leg Mating Unite(LMU)in different wave headings were measured.Experimental results illustrated the complex motion behavior and load characteristics of the continuous transfer operation.Results indicate that the rapid jack-down operations will lead to impact loads and larger lateral DSU loads.The bow quartering seas are much more dangerous as it gives rise to the larger motions and loads.Comparisons with the traditional steady-state modeling indicate that the continuous transfer modeling has greater advantages over the steady-state modeling on predicting the loads.展开更多
Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attenti...Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attention of researchers to their widely distributed energy source due to their simple structure and low cost. The most well-known direct conversion systems presently in use include the Archimedes Wave Swing (AWS) and Power Buoy (PB). In this paper, these two systems were simulated in the same conditions and their behaviors were studied in different wave conditions. In order to verify the simulations, results of the generator of the finite element computations were followed. An attempt was made to determine the merits and drawbacks of each method under different wave conditions by comparing the performance of the two systems. The wave conditions suitable for each system were specified.展开更多
Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams,...Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams, this paper preliminarily contains the polarization directions of fast shear wave and the time-delays of split shear waves at every station, and analyzes the crustal anisotropic characteristics in the source region. In the study area, the polarization direc- tions at stations BAX, TQU, L 132, L 133, L 134, and L 135 are northeast, which is consistent with the strike of Dachuan- Shuangshi fault. There are two polarization directions at MDS and L131, which are northeast and southeast. The scatter of polarization directions suggests the complex stress field around these two stations where two faults intersect. For the normalized time-delays at every station, the range is 1.02-8.64 ms/km. The largest time-delay is from L134 which is closest to the mainshock, and the smallest one is from L133. The variations in time-delays show the decreasing at stations BAX, L134, and L135 because of the stress-relaxation after earthquake.展开更多
To solve problems concerning wave elements and wave propagation, an effective way is the wave energy balance equation, which is widely applied in oceanography and ocean dynamics for its simple computation. The present...To solve problems concerning wave elements and wave propagation, an effective way is the wave energy balance equation, which is widely applied in oceanography and ocean dynamics for its simple computation. The present papaer advances wave energy balance equations considering lateral energy transmission and energy loss as the governing equation for the study of wave refraction-diffraction. For the mathematical model, numerical simulation is made by means of difference method, and the result is verified with two examples.展开更多
A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform...A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009.展开更多
As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow...As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow method is developed for the ocean wave direction inversion of the ocean wave fields imaged by the X-band radar continuously. The proposed algorithm utilizes the echo images received by the X-band wave monitoring radar to estimate the optical flow motion, and then the actual wave propagation direction can be obtained by taking a weighted average of the motion vector for each pixel. Compared with the traditional ocean wave direction inversion method based on frequency-domain, the novel algorithm is fully using a time-domain signal processing method without determination of a current velocity and a modulation transfer function(MTF). In the meantime,the novel algorithm is simple, efficient and there is no need to do something more complicated here. Compared with traditional ocean wave direction inversion method, the ocean wave direction of derived by using this proposed method matches well with that measured by an in situ buoy nearby and the simulation data. These promising results demonstrate the efficiency and accuracy of the algorithm proposed in the paper.展开更多
Multi-parameter hydrological gauge is an instrument developed by the South China Sea Institute of Oceanology, the Chinese Academy of Sciences to make simultaneous observation of current, wave, tide, water temperature ...Multi-parameter hydrological gauge is an instrument developed by the South China Sea Institute of Oceanology, the Chinese Academy of Sciences to make simultaneous observation of current, wave, tide, water temperature and conductivity. By using the well-known "PUV method", the directional wave spectrum can be calculated and the dominant wave direction is then obtained. The comparison of the dominant wave directions derived from the measurements using both the multi-parameter hydrological gauge and the MARK Ⅱ "Wave-Rider" directional buoy shows that the dominant wave directions derived from the two kinds of measurements are in good agreement.展开更多
On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the...On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the normalized rates of wave growth under local winds presented by Wen et al. (1989), a quantitative estimate of the time scale of the response shows that the relationships between the dimensionless time scale and both the dimensionless total wave energy and the dimensionless peak frequency agree fairly well with the observations in comparison with other models.展开更多
文摘A spatial array of wave gauges installed on an observatoion platform has been designed and arranged to measure the local features of winter monsoon directional waves off Taishi coast of Taiwan. A new method, named the Bayesian Parameter Estimation Method(BPEM), is developed and adopted to determine the main direction and the directional spreading parameter of directional spectra. ne BPEM could be considered as a regression analysis to find the maximum joint probability of parameters, which best approximates the observed data from the Bayesian viewpoint. The result of the analysis of field wave data demonstrates the highly dependency of the characteristics of normalized directional spreading on the wave age. The Mitsuyasu type empirical formula of directional spectrum is therefore modified to be representative of monsoon wave field. Moreover, it is suggested that S-max could be expressed as a function of wave steepness. The values of S-max decrease with increasing steepness. Finally, a local directional spreading model, which is simple to be utilized in engineering practice, is proposed.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.51079023,51221961 and 51309050)the National Basic Research Development Program of China(973 Program,Grant Nos.2013CB036101,2011CB013703)
文摘A numerical model is proposed based on the time domain solution of the Boussinesq equations using the finite element method in this paper. The typical wave diffraction through a breakwater gap is simulated to validate the numerical model. Good agreements are obtained between the numerical and experimental results. Further, the effects of the wave directionality on the wave diffraction through a breakwater gap and the wave transformation on a planar bathymetry are numerically investigated. The results show that the wave directional spreading has a significant effect on the wave diffraction and refraction. However, when the directional spreading parameter s is larger than around 40, the effects of the wave directional spreading on the wave transformation can be neglected in engineering applications.
基金The National Natural Science Foundation of China under contract No.40730843the National High Technology Development Program ("863"Program)under contract No.2007AA12Z182
文摘Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitations.Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future.For this study,the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum.The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified.To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR,the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system.In the process of simulation,the sea surface,backscattering signal,modulation spectrum and the estimated wave height spectrum are simulated in each look direction.Directional wave spectrum are measured based on the simulated observations from 0 ? to 360 ? .From the estimated wave spectrum,it has an 180 ? ambiguity like SAR,but it has no special high wave number cut off in all the direction.Finally,the estimated spectrum is compared with the input one in terms of the dominant wave wavelength,direction and SWH and the results are promising.The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties.Moreover,it indicates satellite-based RAR basically can measure waves that SAR can measure.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Science Foundation for Young Scientists of China(Nos.41306191,41306192,41321004,41406203)the Scientific Research Fund of the Second Institute of Oceanography,State Oceanic Administration of China(No.JG1317)
文摘This paper proposes a joint method to simultaneously retrieve wave spectra at dif ferent scales from spaceborne Synthetic Aperture Radar(SAR) and wave spectrometer data. The method combines the output from the two dif ferent sensors to overcome retrieval limitations that occur in some sea states. The wave spectrometer sensitivity coeffi cient is estimated using an ef fective signifi cant wave height(SWH), which is an average of SAR-derived and wave spectrometer-derived SWH. This averaging extends the area of the sea surface sampled by the nadir beam of the wave spectrometer to improve the accuracy of the estimated sensitivity coeffi cient in inhomogeneous sea states. Wave spectra are then retrieved from SAR data using wave spectrometer-derived spectra as fi rst guess spectra to complement the short waves lost in SAR data retrieval. In addition, the problem of 180° ambiguity in retrieved spectra is overcome using SAR imaginary cross spectra. Simulated data were used to validate the joint method. The simulations demonstrated that retrieved wave parameters, including SWH, peak wave length(PWL), and peak wave direction(PWD), agree well with reference parameters. Collocated data from ENVISAT advanced SAR(ASAR), the airborne wave spectrometer STORM, the PHAROS buoy, and the European Centre for Medium-Range Weather Forecasting(ECMWF) were then used to verify the proposed method. Wave parameters retrieved from STORM and two ASAR images were compared to buoy and ECMWF wave data. Most of the retrieved parameters were comparable to reference parameters. The results of this study show that the proposed joint retrieval method could be a valuable complement to traditional methods used to retrieve directional ocean wave spectra, particularly in inhomogeneous sea states.
文摘Pierson- Moskowitz Spectrum, JONSWAP Spectrum as well as Bretschneider- Mitsuyasu Spectrum are used in this paper for analyzing the influence of wave energy directional spread on refraction of wave spectrum due to both current and topography of sea bed. The author's calculation indicates that such kind influence on the characteristic value of wave height as well as the average direction of wave energy propagation can not be ignored.
文摘The observation and estimation of directional spectra of sea waves is one of the essential subjects of study of oceanic dynamics. On the basis of the irregular linear wave theory, estimation methods for i/UV, PUV and VV directional wave spectra are derived. By using ij and PUV data measured in-situ, directional wave spectra are estimated, meanwhile the virtues and defects of various spectra are comparied. This method provide a basis for the observations of sea waves.
基金This work was financially supported by the Science Council, Taiwan (Project No. NSC 91 2611 E 019 007)
文摘Measurements of wave heights with image sequences from a Charged Coupled Device(CCD) camera were made. Sinusoidal, as well as unidirectional and directional, waves were used for the experiments. A transfer function was obtained by calibration of the magnitudes of the gray values of the images against the results of wave gauge measurements for directional waves. With this transfer function, wave heights for regular waves were deduced. It is shown that the average relative errors are smaller than 16% for both unidirectional and directional waves.
文摘The way to use the least-mean-square (LMS) arithmetic to cancel the direct wave for a passive radar system is introduced. The model of the direct wave is deduced. By using the LMS adaptive FIR filter, the software solution for FM passive radar system is developed instead of the hardware consumption of the existent experiment system of passive radar. Further more some simulative results are given. The simulative results indicate that using LMS arithmetic to cancel the direct wave is effective.
基金Foundation item: Supported by the National Natural Science Foundation of China under Grant No. 51109032, and the National Natural Science Foundation of China under Grant No. 50921001.
文摘An experimental investigation of irregular wave forces on quasi-ellipse caisson structures is presented. Irregular waves were generated based on the Jonswap spectrum with two significant wave heights, and the spectrum peak periods range from 1.19 s to 1.81 s. Incident wave directions relative to the centre line of the multiple caissons are from 0° to 22.5°. The spacing between caissons ranges from 2 to 3 times that of the width of the caisson. The effects of these parameters on the wave forces of both the perforated and non-perforated caissons were compared and analyzed. It was found that the perforated caisson can reduce wave forces, especially in the transverse direction. Furthermore, the relative interval and incident wave direction have significant effects on the wave forces in the case of multiple caissons.
基金The Key Technologies Research on HY-1B Satellite Data Applications:JT0805the Composite Investigation and Evaluation on China Offshore Ocean:908-03-02-08
文摘This paper proposes the retrieval method of ocean wave spectrum for airborne radar observations at small incidence angles, which is slightly modified from the method developed by Hauser. Firstly, it makes use of integration method to estimate total mean square slope instead of fitting method, which aims to reduce the affects of fluctuations superposed on normalized radar cross-section by integration. Secondly, for eliminating the noise spectrum contained in signal spectrum, the method considers the signal spectrum in certain look direction without any long wave components as the assumed noise spectrum, which would be subtracted from signal spectrum in any look direction for linear wave spectrum retrieval. Estimated v from the integration method are lower than the one from fitting method and have a standard deviation of 0.004 between them approximately. The assumed noise spectrum energy almost has no big variations along with the wave number and is slightly lower to the high wave number part of signal spectrum in any look direction, which follows that the assumption makes sense. The retrieved directional spectra are compared with the buoy records in terms of peak wavelength, peak direction and the significant wave height. Comparisons show that the retrieved peak wavelength and significant wave height are slightly higher than the buoy records but don't differs significantly (error less than 10%). For peak direction, the swell waves in first case basically propagate in the wind direction 6 hours ago and the wind-generated waves in second case also propagate in the wind direction, but the 180° ambiguity remains. Results show that the modified method can carry out the retrieval of directional wave spectrum.
文摘Satellite remote sensing technique offers a wide range of information, and is one of the tools for ocean wave observation. This paper discusses the limitations of Synthetic Aperture Radar (SAR) images in wave field analysis. It is found that the wave field analysis is affected by the gray value distribution of image and the relationship between satellite travel and wave propagation directions. Since human activities and coastal engineering are performed in nearshore areas, some issues are discussed for nearshore SAR image analysis. Several case studies show that the wave parameters estimated from nearshore SAR images are quite different from in situ measurements, suggesting that the wave information derived from nearshore SAR images cannot appropriately represent the wave characteristics. One of the reasons is that the wave field is non homogeneous in the nearshore area.
基金The Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)under contract No.ZJW-2019-08the Program for Scientific Research Start-up Funds of Guangdong Ocean University under contract No.101302/R18001+1 种基金the National Natural Science Foundation of China under contract No.41776034the First-class Discipline Plan of Guangdong Province under contract No.CYL231419012。
文摘Effects of currents on winter wind waves in the tide-dominated Qiongzhou Strait(QS)were numerically evaluated via employing the coupled ocean-atmosphere-wave-sediment transport(COAWST)modeling system.Validations showed satisfactory model performance in simulating the intense tidal currents in the QS.Different effects of sea level variations and tidal currents on waves were examined under the maximum eastward(METC)and westward(MWTC)tidal currents.In the east entrance area of the QS,the positive sea levels under the MWTC deepened the water depth felt by waves,benefiting the further propagation of wave energy into the inner strait and causing increased wave height.The METC and the MWTC could both enhance the wave height in the east entrance area of the QS,mainly through current-induced convergence and wavenumber shift,respectively.By current-induced refraction,the METC(MWTC)triggered counterclockwise(clockwise)rotation in peak wave directions in the northern part of the QS while clockwise(counterclockwise)rotation in the southern part.
文摘The topside floatover installation is always a great challenge and is sensitive to environmental conditions.In this study,experimental analysis on the mating operation of the floatover installation in different wave headings is presented.The continuous mating operation using the rapid transfer technique was experimentally simulated with the assistance of the jacking system and the ballast system.In the continuous transfer modeling,the topsides loads were transferred onto the jacket by several consecutive steps,including the first rapid jack-down for the 30%loads,continuous 30%−70%load transfer and the second repaid jack-down for the remaining 30%loads.Motions of the barge and the topsides as well as loads on the Deck Support Unite(DSU)and the Leg Mating Unite(LMU)in different wave headings were measured.Experimental results illustrated the complex motion behavior and load characteristics of the continuous transfer operation.Results indicate that the rapid jack-down operations will lead to impact loads and larger lateral DSU loads.The bow quartering seas are much more dangerous as it gives rise to the larger motions and loads.Comparisons with the traditional steady-state modeling indicate that the continuous transfer modeling has greater advantages over the steady-state modeling on predicting the loads.
文摘Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attention of researchers to their widely distributed energy source due to their simple structure and low cost. The most well-known direct conversion systems presently in use include the Archimedes Wave Swing (AWS) and Power Buoy (PB). In this paper, these two systems were simulated in the same conditions and their behaviors were studied in different wave conditions. In order to verify the simulations, results of the generator of the finite element computations were followed. An attempt was made to determine the merits and drawbacks of each method under different wave conditions by comparing the performance of the two systems. The wave conditions suitable for each system were specified.
基金supported by Research Project in Earthquake Science(Nos.201308018 and No.201108002) National Natural Science Foundation of China(No.40904012)
文摘Using seismic data of the aftershocks sequence of the April 20, 2013 Lushan earthquake recorded by seismic temporary and permanent stations in the source region, with the visual inspection of particle motion diagrams, this paper preliminarily contains the polarization directions of fast shear wave and the time-delays of split shear waves at every station, and analyzes the crustal anisotropic characteristics in the source region. In the study area, the polarization direc- tions at stations BAX, TQU, L 132, L 133, L 134, and L 135 are northeast, which is consistent with the strike of Dachuan- Shuangshi fault. There are two polarization directions at MDS and L131, which are northeast and southeast. The scatter of polarization directions suggests the complex stress field around these two stations where two faults intersect. For the normalized time-delays at every station, the range is 1.02-8.64 ms/km. The largest time-delay is from L134 which is closest to the mainshock, and the smallest one is from L133. The variations in time-delays show the decreasing at stations BAX, L134, and L135 because of the stress-relaxation after earthquake.
文摘To solve problems concerning wave elements and wave propagation, an effective way is the wave energy balance equation, which is widely applied in oceanography and ocean dynamics for its simple computation. The present papaer advances wave energy balance equations considering lateral energy transmission and energy loss as the governing equation for the study of wave refraction-diffraction. For the mathematical model, numerical simulation is made by means of difference method, and the result is verified with two examples.
基金The National Natural Science Foundation of China under contract No.61601132
文摘A new method to determine wave directions from nautical X-band images is proposed. The signatures of ocean waves show obvious scale and directional characteristics in nautical X-band radar images. Curvelet transform(CT) possesses very high scale and directional sensitivities. Therefore, it has good capability to analyze ocean wave fields. The radar images are decomposed at different scales, in different directions, and at different positions by CT, and curvelet coefficients are obtained. Given to the scale and directional characteristics of surface waves,the information of ocean waves is centralized in the curvelet coefficients of certain directions and at certain scales.Therefore, the wave orientations can be determined. The 180 ambiguity is removed by calculating crosscorrelation coefficients(CCCs) between continuous collected images. The proposed method is verified by the dataset collected on the Northwest coast of the Zhangzi Island in the Yellow Sea of China from March to April 2009.
基金The National Key Research and Development Program of China under contract No.2016YFC0800405the Shanghai Municipal Science and Technology Project of China under contract No.15DZ0500600the Specialized Research Fund for the Doctoral Program of Higher Education of China under contract No.2014212020203
文摘As one of the important sea state parameters for navigation safety and coastal resource management, the ocean wave direction represents the propagation direction of the wave. A novel algorithm based on an optical flow method is developed for the ocean wave direction inversion of the ocean wave fields imaged by the X-band radar continuously. The proposed algorithm utilizes the echo images received by the X-band wave monitoring radar to estimate the optical flow motion, and then the actual wave propagation direction can be obtained by taking a weighted average of the motion vector for each pixel. Compared with the traditional ocean wave direction inversion method based on frequency-domain, the novel algorithm is fully using a time-domain signal processing method without determination of a current velocity and a modulation transfer function(MTF). In the meantime,the novel algorithm is simple, efficient and there is no need to do something more complicated here. Compared with traditional ocean wave direction inversion method, the ocean wave direction of derived by using this proposed method matches well with that measured by an in situ buoy nearby and the simulation data. These promising results demonstrate the efficiency and accuracy of the algorithm proposed in the paper.
基金This work was jointly supported by the the National Natural Science Foundation of China under contract Nos 40576014 and 40676021the Science and Technology Program of Guangdong Province under contract No.2005D33201006.
文摘Multi-parameter hydrological gauge is an instrument developed by the South China Sea Institute of Oceanology, the Chinese Academy of Sciences to make simultaneous observation of current, wave, tide, water temperature and conductivity. By using the well-known "PUV method", the directional wave spectrum can be calculated and the dominant wave direction is then obtained. The comparison of the dominant wave directions derived from the measurements using both the multi-parameter hydrological gauge and the MARK Ⅱ "Wave-Rider" directional buoy shows that the dominant wave directions derived from the two kinds of measurements are in good agreement.
文摘On the basis of the wave energy balance equation, the response model of mean directions of locally wind-generated waves in slowly turning wind fields has been derived. The results show that in a homogeneous field, the time scale of the response is not only related to the rate of wave growth, but also to the directional energy distribution and the angle between the wind direction and the mean wave direction. Furthermore, the law of change in the mean wave direction has been derived. The numerical computations show that the response of wave directions to slowly turning wind directions can be treated as the superposition of the responses of wave directions to a series of sudden small-angle changes of wind directions and the turning rate of the mean wave direction depends on the turning rate and the total turning angles of the wind direction. The response of wave directions is in agreement with the response for a sudden change of wind directions if the change in wind directions is very fast. Based on the normalized rates of wave growth under local winds presented by Wen et al. (1989), a quantitative estimate of the time scale of the response shows that the relationships between the dimensionless time scale and both the dimensionless total wave energy and the dimensionless peak frequency agree fairly well with the observations in comparison with other models.