An innovative hydrodynamic theory and numerical model were developed to help improve the efficiency, accuracy, and convergence of the numerical prediction of wave drift forces on two side-by-side deepwater floating bo...An innovative hydrodynamic theory and numerical model were developed to help improve the efficiency, accuracy, and convergence of the numerical prediction of wave drift forces on two side-by-side deepwater floating bodies. The wave drift forces were expressed by the double integration of source strength and the corresponding Green function on the body surface, which is consistent with the far field formula based on momentum conservation and sharing the advantage of near field calculations providing the drift force on each body. Numerical results were validated through comparing the general far field model and pressure integral model, as well as the middle field model developed usin^z the software HydroStar.展开更多
The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the ...The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the drift of electromagnetic waves in a cold ionized plasma in the absence of a magnetic field(Erofeev 2015 Phys. Plasmas 22 092302) and the drift of long Langmuir waves in a cold magnetized plasma(Erofeev 2019 J. Plasma Phys. 85 905850104). It is shown that the traditional concept of the wave kinetic equation does not account for the effects of the forced plasma oscillations that are excited when the waves propagate in an inhomogeneous plasma.Terms are highlighted that account for these oscillations in the kinetic equations of the abovementioned highly informative wave drift scenarios.展开更多
Wave drift force is the key factor affecting the mooring ability of semi-submersible platform. Aiming at the mooring system composed of replenishment ship and semi-submersible platform, the influence of hydrodynamic i...Wave drift force is the key factor affecting the mooring ability of semi-submersible platform. Aiming at the mooring system composed of replenishment ship and semi-submersible platform, the influence of hydrodynamic interference on semi-submersible platform is analyzed. Based on the three-dimensional potential flow theory and AQWA software, the effects of different wave directions and spacing on the wave drift force of semi-submersible platform are considered. The results show that the hydrodynamic interference of the replenishment ship will affect the wave drift force of the semi-submersible platform, and the influence of the distance between adjacent vessels and the wave direction angle is more sensitive in the middle and high wave frequencies. This paper can provide support for the research of hydrodynamic interference of semi-submersible platform.展开更多
It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner mod...It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner model, its improvement is reflected in the horizontal motion which includes an explicit drift term. On the one hand, the depth-decay factor for the new drift accords well with that of the particle’s horizontal velocity. It is more rational than that of Stokes drift. On the other hand, the new formula needs no Taylor expansion as for Stokes drift and is applicable for the waves with big slopes. In addition, the new formula can also yield a more rational magnitude for the surface drift than that of Stokes.展开更多
Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechan...Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechanism through the induced Stokes drift,and that this dispersion mechanism may have the same order of significance comparable with the others means due to tidal currents and wind.It is investigated whether or not surface floating substances will disperse in the random wave environment due to the induced Stokes drift.An analytical derivation is first performed to obtain the drift velocity under the random waves.From the analysis,it is shown that the drift velocity is a time-independent value that does not possess any fluctuation given a specific wave energy spectrum.Thus,the random wave drift by itself should not have a dispersive effect on the surface floating substances.Experiments were then conducted with small floating objects subjected to P-M spectral waves in a laboratory wave flume,and the experimental results reinforced the conclusion drawn.展开更多
The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomeno...The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.展开更多
A moored array of circular cylinders undergoes slow oscillations in the horizontal plane,i.e.surge,sway and yaw,due to the non linear excitation of ocean waves.To evaluate wave drift damping,the slow oscillation is ap...A moored array of circular cylinders undergoes slow oscillations in the horizontal plane,i.e.surge,sway and yaw,due to the non linear excitation of ocean waves.To evaluate wave drift damping,the slow oscillation is approximated by quasi steady motions or equivalently,a uniform flow is superposed to the wave field.In the case of yawing motion,a uniform rotation about the yawing axis is enforced to the entire fluid domain.The velocity potential is expanded into perturbation series based on two small parameters that measure wave slope and velocity of steady flow.Wave drift forces (moment) are calculated by the far field method.Experiment arrangements are also discussed.Measured data are compared to the calculated results to verify the present theory.展开更多
There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow.A long-lived standing wave phase,which we call the Caviton,and a short-lived traveling wave phase(in radial direction...There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow.A long-lived standing wave phase,which we call the Caviton,and a short-lived traveling wave phase(in radial direction) we call the Instanton.Several abrupt phenomena observed in tokamaks,such as intermittent excitation of geodesic acoustic mode(GAM) shown in this paper,could be attributed to the sudden and fast radial motion of Instanton.The composite drift wave-zonal flow system evolves at the two well-separate scales:the micro-scale and the meso-scale.The eigenmode equation of the model defines the zero-order(micro-scale) variation;it is solved by making use of the two-dimensional(2 D) weakly asymmetric ballooning theory(WABT),a theory suitable for modes localized to rational surface like drift waves,and then refined by shifted inverse power method,an iterative finite difference method.The next order is the equation of electron drift wave(EDW) envelope(containing group velocity of EDW) which is modulated by the zonal flow generated by Reynolds stress of EDW.This equation is coupled to the zonal flow equation,and numerically solved in spatiotemporal representation;the results are displayed in self-explanatory graphs.One observes a strong correlation between the Caviton-Instanton transition and the zero-crossing of radial group velocity of EDW.The calculation brings out the defining characteristics of the Instanton:it begins as a linear traveling wave right after the transition.Then,it evolves to a nonlinear stage with increasing frequency all the way to 20 kHz.The modulation to Reynolds stress in zonal flow equation brought in by the nonlinear Instanton will cause resonant excitation to GAM.The intermittency is shown due to the random phase mixing between multiple central rational surfaces in the reaction region.展开更多
In order to describe the characterization of resistive drift-wave nuctuauon in a [OKalnaK plasma, a coup^e~a lllVlbt;IU two-dimensional Hasegawa-Wakatani model is investigated. Two groups of new analytic solutions wit...In order to describe the characterization of resistive drift-wave nuctuauon in a [OKalnaK plasma, a coup^e~a lllVlbt;IU two-dimensional Hasegawa-Wakatani model is investigated. Two groups of new analytic solutions with and without phase shift between the fluctuant density and the ftuctuant potential are obtained by using the special function transformation method. It is demonstrated that the fluctuant potential shares similar spatio-temporal variations with the density. It is found from the solutions without phase shift that the effect of the diffusion and adiabaticity on the fluctuant density is quite complex, and that the fuctuation may be controlled through the adiabaticity and diffusion. By using the typical parameters in the quasi-adiabatic regime in the solutions with phase contours become dense toward the plasma edge and the distribution in the tokamak edge. shift, it is shown that the density gradient becomes larger as the contours have irregular structures, which reveal the nonuniform展开更多
A circularly orbiting electromagnetic harmonic wave may appear when a 1S electron encounters a decelerating stopping positively charged hole inside a semiconductor. The circularly orbiting electromagnetic harmonic wav...A circularly orbiting electromagnetic harmonic wave may appear when a 1S electron encounters a decelerating stopping positively charged hole inside a semiconductor. The circularly orbiting electromagnetic harmonic wave can have an interaction with a conducting electron which has a constant time independent drift velocity.展开更多
-Drift current induced by wind and waves is investigated with phase-averaged Navier-Stokes equation in which the Reynolds stress is closed by k-ε model. The governing equations are solved by the finite volume method ...-Drift current induced by wind and waves is investigated with phase-averaged Navier-Stokes equation in which the Reynolds stress is closed by k-ε model. The governing equations are solved by the finite volume method in a system of nonorthogonal coordinates which is fitted to the phase-averaged wave surface. The predicted drift current is fairly reasonable and the drag coefficient of sea-surface predicted with the newly developed interface conditions shows good agreement with previous measurements when breaking waves do not exist.展开更多
Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary wave...Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed.展开更多
The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle disperse...The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.展开更多
Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by esta...Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.展开更多
In a quasi-two-dimensional model, the scattering of incident ordinary electromag- netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering c...In a quasi-two-dimensional model, the scattering of incident ordinary electromag- netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia〈〈1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then kia 〈〈 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering crosssection. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.展开更多
The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and usin...The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and using the oceanic and wave parameters from a global ocean circulation model (HYCOM) and a wave model (Wave Watch III). The dimensional analysis and quantitative estimation method were conducted to assess the importance of the effect induced by the Stokes drift and to analyze its spatial distribution and seasonal variation characteristics. Results show that the contribution of the Stokes drift to the mixed layer temperature variation at mid-to-high latitudes is comparable with that of the mean current, and a substantial part of mixed layer temperature change is induced by taking the Stokes drift effect into account. Although the advection heat transport induced by the Stokes drift is not the leading term for the mixed layer temperature equation, it cannot be neglected and even becomes critical in some regions for the simulation of the upperocean temperature.展开更多
Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relativ...Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.展开更多
The particle trajectory on a weakly nonlinear progressive surface wave obliquely interacting with a uniform current is studied by using an Euler-Lagrange transformation.The third-order asymptotic solution is a periodi...The particle trajectory on a weakly nonlinear progressive surface wave obliquely interacting with a uniform current is studied by using an Euler-Lagrange transformation.The third-order asymptotic solution is a periodic bounded function of Lagrangian labels and time,which imply that the entire solution is uniformly-valid.The explicit parametric solution highlights the trajectory of a water particle and mass transport associated with a particle displacement can now be obtained directly in Lagrangian form.The angular frequency and Lagrangian mean level of the particle motion in Lagrangian form differ from those of the Eulerian.The variations in the water particle orbits resulting from the oblique interaction with a steady uniform current of different magnitudes are also investigated.展开更多
The longitudinal dispersion of solute in open channel flow with short period progressive waves is investigated. The waves induce second order drift velocity in the direction of propagation and enhance the mixing proce...The longitudinal dispersion of solute in open channel flow with short period progressive waves is investigated. The waves induce second order drift velocity in the direction of propagation and enhance the mixing process in concurrent direction. The 1-D wave-period-averaged dispersion equation is derived and an expression for the wave-current induced longitudinal dispersion coefficient (WCLDC) is propased based on Fiscber' s expression (1979) for dispersion in unidirectional flow. The result shows that the effect of waves on dispersion is mainly due to the cross-sectional variation of the drift velocity. Furthermore, to obtain a more practical expression of the WCLDC, the longitudinal dispersion coefficient due to Seo and Cheong (1998) is modified to incluee the effect of drift velocity. Laboratory experiments have been conducted to verify the propased expression. The experimental results, together with dimensional analysis, show that tbe wave effect can be reflected by the ratio between the wave amplitude and wave period. A comparative study between the cases with and without waves demonstrates that the magnitude of the longitudinal dispersion coefficient is increased nnder the presence of waves.展开更多
Numerical axisymmetric soliton and oscillating wave solutions for the Flierl-Petviashvili equation in plasmas are presented. Solution branch paradigm and examples are given. Some implications of results to ion drift w...Numerical axisymmetric soliton and oscillating wave solutions for the Flierl-Petviashvili equation in plasmas are presented. Solution branch paradigm and examples are given. Some implications of results to ion drift wave as well as force-free field of magnetic equilibrium are briefly discussed.展开更多
基金Supported by National Natural Science Foundation of China (51079032)
文摘An innovative hydrodynamic theory and numerical model were developed to help improve the efficiency, accuracy, and convergence of the numerical prediction of wave drift forces on two side-by-side deepwater floating bodies. The wave drift forces were expressed by the double integration of source strength and the corresponding Green function on the body surface, which is consistent with the far field formula based on momentum conservation and sharing the advantage of near field calculations providing the drift force on each body. Numerical results were validated through comparing the general far field model and pressure integral model, as well as the middle field model developed usin^z the software HydroStar.
文摘The kinetics is analyzed of the drift of non-potential plasma waves in spatial positions and wavevectors due to plasma's spatial inhomogeneity. The analysis is based on highly informative kinetic scenarios of the drift of electromagnetic waves in a cold ionized plasma in the absence of a magnetic field(Erofeev 2015 Phys. Plasmas 22 092302) and the drift of long Langmuir waves in a cold magnetized plasma(Erofeev 2019 J. Plasma Phys. 85 905850104). It is shown that the traditional concept of the wave kinetic equation does not account for the effects of the forced plasma oscillations that are excited when the waves propagate in an inhomogeneous plasma.Terms are highlighted that account for these oscillations in the kinetic equations of the abovementioned highly informative wave drift scenarios.
文摘Wave drift force is the key factor affecting the mooring ability of semi-submersible platform. Aiming at the mooring system composed of replenishment ship and semi-submersible platform, the influence of hydrodynamic interference on semi-submersible platform is analyzed. Based on the three-dimensional potential flow theory and AQWA software, the effects of different wave directions and spacing on the wave drift force of semi-submersible platform are considered. The results show that the hydrodynamic interference of the replenishment ship will affect the wave drift force of the semi-submersible platform, and the influence of the distance between adjacent vessels and the wave direction angle is more sensitive in the middle and high wave frequencies. This paper can provide support for the research of hydrodynamic interference of semi-submersible platform.
文摘It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner model, its improvement is reflected in the horizontal motion which includes an explicit drift term. On the one hand, the depth-decay factor for the new drift accords well with that of the particle’s horizontal velocity. It is more rational than that of Stokes drift. On the other hand, the new formula needs no Taylor expansion as for Stokes drift and is applicable for the waves with big slopes. In addition, the new formula can also yield a more rational magnitude for the surface drift than that of Stokes.
基金The State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering Research Foundation of China under contract No.2015491311
文摘Contaminants that are floating on the surface of the ocean are subjected to the action of random waves.In the literature,it has been asserted by researchers that the random wave action will lead to a dispersion mechanism through the induced Stokes drift,and that this dispersion mechanism may have the same order of significance comparable with the others means due to tidal currents and wind.It is investigated whether or not surface floating substances will disperse in the random wave environment due to the induced Stokes drift.An analytical derivation is first performed to obtain the drift velocity under the random waves.From the analysis,it is shown that the drift velocity is a time-independent value that does not possess any fluctuation given a specific wave energy spectrum.Thus,the random wave drift by itself should not have a dispersive effect on the surface floating substances.Experiments were then conducted with small floating objects subjected to P-M spectral waves in a laboratory wave flume,and the experimental results reinforced the conclusion drawn.
基金The project supported by National Natural Science Foundation of China under Grant No. 10405004
文摘The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.
文摘A moored array of circular cylinders undergoes slow oscillations in the horizontal plane,i.e.surge,sway and yaw,due to the non linear excitation of ocean waves.To evaluate wave drift damping,the slow oscillation is approximated by quasi steady motions or equivalently,a uniform flow is superposed to the wave field.In the case of yawing motion,a uniform rotation about the yawing axis is enforced to the entire fluid domain.The velocity potential is expanded into perturbation series based on two small parameters that measure wave slope and velocity of steady flow.Wave drift forces (moment) are calculated by the far field method.Experiment arrangements are also discussed.Measured data are compared to the calculated results to verify the present theory.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1967206,11975231,11805203,and 11775222)the National MCF Energy Research and Development Program,China(Grant Nos.2018YFE0311200 and 2017YFE0301204)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS004)。
文摘There are two distinct phases in the evolution of drift wave envelope in the presence of zonal flow.A long-lived standing wave phase,which we call the Caviton,and a short-lived traveling wave phase(in radial direction) we call the Instanton.Several abrupt phenomena observed in tokamaks,such as intermittent excitation of geodesic acoustic mode(GAM) shown in this paper,could be attributed to the sudden and fast radial motion of Instanton.The composite drift wave-zonal flow system evolves at the two well-separate scales:the micro-scale and the meso-scale.The eigenmode equation of the model defines the zero-order(micro-scale) variation;it is solved by making use of the two-dimensional(2 D) weakly asymmetric ballooning theory(WABT),a theory suitable for modes localized to rational surface like drift waves,and then refined by shifted inverse power method,an iterative finite difference method.The next order is the equation of electron drift wave(EDW) envelope(containing group velocity of EDW) which is modulated by the zonal flow generated by Reynolds stress of EDW.This equation is coupled to the zonal flow equation,and numerically solved in spatiotemporal representation;the results are displayed in self-explanatory graphs.One observes a strong correlation between the Caviton-Instanton transition and the zero-crossing of radial group velocity of EDW.The calculation brings out the defining characteristics of the Instanton:it begins as a linear traveling wave right after the transition.Then,it evolves to a nonlinear stage with increasing frequency all the way to 20 kHz.The modulation to Reynolds stress in zonal flow equation brought in by the nonlinear Instanton will cause resonant excitation to GAM.The intermittency is shown due to the random phase mixing between multiple central rational surfaces in the reaction region.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10905038,11275123,and 11365017)the National ITER Plans Program of China(Grant No.2009GB105002)the Natural Science Foundation of Jiangxi Province,China(Grant Nos.2008GZS0045 and 2009GZW0026)
文摘In order to describe the characterization of resistive drift-wave nuctuauon in a [OKalnaK plasma, a coup^e~a lllVlbt;IU two-dimensional Hasegawa-Wakatani model is investigated. Two groups of new analytic solutions with and without phase shift between the fluctuant density and the ftuctuant potential are obtained by using the special function transformation method. It is demonstrated that the fluctuant potential shares similar spatio-temporal variations with the density. It is found from the solutions without phase shift that the effect of the diffusion and adiabaticity on the fluctuant density is quite complex, and that the fuctuation may be controlled through the adiabaticity and diffusion. By using the typical parameters in the quasi-adiabatic regime in the solutions with phase contours become dense toward the plasma edge and the distribution in the tokamak edge. shift, it is shown that the density gradient becomes larger as the contours have irregular structures, which reveal the nonuniform
文摘A circularly orbiting electromagnetic harmonic wave may appear when a 1S electron encounters a decelerating stopping positively charged hole inside a semiconductor. The circularly orbiting electromagnetic harmonic wave can have an interaction with a conducting electron which has a constant time independent drift velocity.
文摘-Drift current induced by wind and waves is investigated with phase-averaged Navier-Stokes equation in which the Reynolds stress is closed by k-ε model. The governing equations are solved by the finite volume method in a system of nonorthogonal coordinates which is fitted to the phase-averaged wave surface. The predicted drift current is fairly reasonable and the drag coefficient of sea-surface predicted with the newly developed interface conditions shows good agreement with previous measurements when breaking waves do not exist.
文摘Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed.
基金supported by National Natural Science Foundation of China National Natural Science Foundation of China (41421003 and 41627805)
文摘The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period(third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around -32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves(e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations(or accelerations) of " local" plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0405401)the National Science&Technology Pillar Program(Grant No.2012BAB03B01)+1 种基金the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2014B30914)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)
文摘Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.
基金National Natural Science Foundation of China(Nos,10375063.40336052)
文摘In a quasi-two-dimensional model, the scattering of incident ordinary electromag- netic waves by a dipole-electrostatic drift vortex is studied with first-order Born approximation. The distribution of the scattering cross-section and total cross-section are evaluated analytically in different approximate conditions, and the physical interpretations are discussed. When the wavelength of incident wave is much longer than the vortex radius (kia〈〈1), it is found that the angle at which the scattering cross-section reaches its maxim depends significantly on the approximation of the parameters of the vortex used. It is also found that the total scattering cross-section has an affinitive relation with the parameters of the plasma, while it is irrelevant to the frequency of the incident wave in a wide range of parameters of the vortex. In a totally different range of parameters when incident wave is in the radar-frequency range (then kia 〈〈 1, the wavelength of incident wave is much shorter than the vortex radius), the numerical procedure is conducted with computer in order to obtain the distribution and the total expression of the scattering crosssection. Then it is found that the total scattering cross-section in the low frequency range is much larger than that in high frequency range, so the scattering is more effective in the low frequency range than in high frequency range.
基金The National Basic Research Program of China under contract No.2013CB430304the National High-Tech R&D Program of China under contract No.2013AA09A505+2 种基金the National Natural Science Foundation and Science and Technology Support Key Project Plan of China under contract No.2011BAC03B02the National Natural Science Foundation of China under contract Nos 41376013,41376015,41306006 and 41206178the open Fundation of the key layboratory of Digital Ocean under contract No.KLDO 201406
文摘The impact of Stokes drift on the mixed layer temperature variation was estimated by taking into account an advective heat transport term induced by the Stokes drift in the equation of mixed layer temperature and using the oceanic and wave parameters from a global ocean circulation model (HYCOM) and a wave model (Wave Watch III). The dimensional analysis and quantitative estimation method were conducted to assess the importance of the effect induced by the Stokes drift and to analyze its spatial distribution and seasonal variation characteristics. Results show that the contribution of the Stokes drift to the mixed layer temperature variation at mid-to-high latitudes is comparable with that of the mean current, and a substantial part of mixed layer temperature change is induced by taking the Stokes drift effect into account. Although the advection heat transport induced by the Stokes drift is not the leading term for the mixed layer temperature equation, it cannot be neglected and even becomes critical in some regions for the simulation of the upperocean temperature.
基金financially supported by the National Natural Science Foundation of China(Grant No.11272079)the National Basic Research Program of China(973 Program,Grant No.2011CB013702)
文摘Nonlinear behaviors of a free-floating body in waves were experimentally investigated in the present study. The experiments were carried out for 6 different wave heights and 6 different wave periods to cover a relatively wide range of wave nonlinearities. A charge-coupled device (CCD) camera was used to capture the real-time motion of the floating body. The measurement data show that the sway, heave and roll motions of the floating body are all harmonic oscillations while the equilibrium position of the sway motion drifts in the wave direction. The drift speed is proportional to wave steepness when the size of the floating body is comparable to the wavelength, while it is proportional to the square of wave steepness when the floating body is relatively small. In addition, the drift motion leads to a slightly longer oscillation period of the floating body than the wave period of nonlinear wave and the discrepancy increases with the increment of wave steepness.
基金National Science Council in Taiwan 97-2221-E-230-023
文摘The particle trajectory on a weakly nonlinear progressive surface wave obliquely interacting with a uniform current is studied by using an Euler-Lagrange transformation.The third-order asymptotic solution is a periodic bounded function of Lagrangian labels and time,which imply that the entire solution is uniformly-valid.The explicit parametric solution highlights the trajectory of a water particle and mass transport associated with a particle displacement can now be obtained directly in Lagrangian form.The angular frequency and Lagrangian mean level of the particle motion in Lagrangian form differ from those of the Eulerian.The variations in the water particle orbits resulting from the oblique interaction with a steady uniform current of different magnitudes are also investigated.
文摘The longitudinal dispersion of solute in open channel flow with short period progressive waves is investigated. The waves induce second order drift velocity in the direction of propagation and enhance the mixing process in concurrent direction. The 1-D wave-period-averaged dispersion equation is derived and an expression for the wave-current induced longitudinal dispersion coefficient (WCLDC) is propased based on Fiscber' s expression (1979) for dispersion in unidirectional flow. The result shows that the effect of waves on dispersion is mainly due to the cross-sectional variation of the drift velocity. Furthermore, to obtain a more practical expression of the WCLDC, the longitudinal dispersion coefficient due to Seo and Cheong (1998) is modified to incluee the effect of drift velocity. Laboratory experiments have been conducted to verify the propased expression. The experimental results, together with dimensional analysis, show that tbe wave effect can be reflected by the ratio between the wave amplitude and wave period. A comparative study between the cases with and without waves demonstrates that the magnitude of the longitudinal dispersion coefficient is increased nnder the presence of waves.
基金The project supported by National Natural Science Foundation of China under Grant No. 10475009, the New Century Excellent Talents in University of China, and partially by the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy under the Associate Programm
文摘Numerical axisymmetric soliton and oscillating wave solutions for the Flierl-Petviashvili equation in plasmas are presented. Solution branch paradigm and examples are given. Some implications of results to ion drift wave as well as force-free field of magnetic equilibrium are briefly discussed.