期刊文献+
共找到344篇文章
< 1 2 18 >
每页显示 20 50 100
Oscillation and Conversion Performance of Double-Float Wave Energy Converter 被引量:4
1
作者 Liang Zhang Peng Jin +2 位作者 Binzhen Zhou Xiongbo Zheng Hengxu Liu 《Journal of Marine Science and Application》 CSCD 2019年第1期54-63,共10页
In this study, we investigated the hydrodynamic and energy conversion performance of a double-float wave energy converter(WEC) based on the linear theory of water waves. The generator power take-off(PTO) system is mod... In this study, we investigated the hydrodynamic and energy conversion performance of a double-float wave energy converter(WEC) based on the linear theory of water waves. The generator power take-off(PTO) system is modeled as a combination of a linear viscous damping and a linear spring. Using the frequency domain method, the optimal damping coefficient of the generator PTO system is derived to achieve the optimal conversion efficiency(capture width ratio).Based on the potential flow theory and the higher-order boundary element method(HOBEM), we constructed a threedimensional model of double-float WEC to study its hydrodynamic performance and response in the time domain. Only the heave motion of the two-body system is considered and a virtual function is introduced to decouple the motions of the floats. The energy conversion character of the double-float WEC is also evaluated. The investigation is carried out over a wide range of incident wave frequency. By analyzing the effects of the incident wave frequency, we derive the PTO's damping coefficient for the double-float WEC's capture width ratio and the relationships between the capture width ratio and the natural frequencies of the lower and upper floats. In addition, it is capable to modify the natural frequencies of the two floats by changing the stiffness coefficients of the PTO and mooring systems. We found that the natural frequencies of the device can directly influence the peak frequency of the capture width, which may provide an important reference for the design of WECs. 展开更多
关键词 Double-float wec energy conversion CAPTURE WIDTH ratio Optimal damping Resonance
下载PDF
Dynamic Properties and Energy Conversion Efficiency of A Floating Multi-Body Wave Energy Converter 被引量:3
2
作者 YANG Shao-hui WANG Yong-qing +2 位作者 HE Hong-zhou ZHANG Jun CHEN Hu 《China Ocean Engineering》 SCIE EI CSCD 2018年第3期347-357,共11页
The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodi... The present study proposed a floating multi-body wave energy converter composed of a floating central platform,multiple oscillating bodies and multiple actuating arms. The relative motions between the oscillating bodies and the floating central platform capture multi-point wave energy simultaneously. The converter was simplified as a forced vibration system with three degrees of freedom, namely two heave motions and one rotational motion. The expressions of the amplitude-frequency response and the wave energy capture width were deduced from the motion equations of the converter. Based on the built mathematical model, the effects of the PTO damping coefficient, the PTO elastic coefficient, the connection length between the oscillating body and central platform, and the total number of oscillating bodies on the performance of the wave energy converter were investigated. Numerical results indicate that the dynamical properties and the energy conversion efficiency are related not only to the incident wave circle frequency but also to the converter’s physical parameters and interior PTO coefficients. By adjusting the connection length, higher wave energy absorption efficiencies can be obtained. More oscillating bodies installed result in more stable floating central platform and higher wave energy conversion efficiency. 展开更多
关键词 wave energy converter multi-point absorption conversion efficiency vibration properties
下载PDF
A Twin Unidirectional Impulse Turbine for Wave Energy Conversion—Effect of Fluidic Diode on the Performance 被引量:3
3
作者 Shinya Okuhara Manabu Takao +2 位作者 Hideki Sato Akiyasu Takami Toshiaki Setoguchi 《Open Journal of Fluid Dynamics》 2014年第5期433-439,共7页
As a system using a conventional unidirectional air turbine in oscillating water column (OWC) based on a wave energy plant, a twin unidirectional impulse turbine topology has been suggested in previous studies. Howeve... As a system using a conventional unidirectional air turbine in oscillating water column (OWC) based on a wave energy plant, a twin unidirectional impulse turbine topology has been suggested in previous studies. However, the average efficiency of the suggested twin turbine is considerably lower than that of a conventional unidirectional turbine in this topology because reciprocating air flow can’t be rectified adequately by a unidirectional turbine. In order to improve the efficiency, using fluidic diode is discussed. In this study, two different fluidic diodes were discussed by computational fluid dynamics (CFD) and a wind tunnel test. Further, its usefulness is discussed from a view point of the turbine efficiency. The fluidic diode was shown to improve rectification of the topology. However, it needs more improvement in regards to its energy loss in order to enhance the turbine efficiency. 展开更多
关键词 Fluidic DIODE TWIN UNIDIRECTIONAL TURBINE wave energy conversion OSCILLATING Water COLUMN
下载PDF
Comparison of the Performance of Two Direct Wave Energy Conversion Systems: Archimedes Wave Swing and Power Buoy 被引量:1
4
作者 Jawad Faiz M. Ebrahimi-Salari 《Journal of Marine Science and Application》 2011年第4期419-428,共10页
Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attenti... Many wave energy conversion devices have not been well received. The main reasons are that they are too complicated and not economical. However, in the last two decades direct conversion systems have drawn the attention of researchers to their widely distributed energy source due to their simple structure and low cost. The most well-known direct conversion systems presently in use include the Archimedes Wave Swing (AWS) and Power Buoy (PB). In this paper, these two systems were simulated in the same conditions and their behaviors were studied in different wave conditions. In order to verify the simulations, results of the generator of the finite element computations were followed. An attempt was made to determine the merits and drawbacks of each method under different wave conditions by comparing the performance of the two systems. The wave conditions suitable for each system were specified. 展开更多
关键词 AWS PB direct wave energy conversion PM linear generator
下载PDF
Wells Turbine for Wave Energy Conversion —Improvement of the Performance by Means of Impulse Turbine for Bi-Directional Flow 被引量:1
5
作者 Shinya Okuhara Manabu Takao +1 位作者 Akiyasu Takami Toshiaki Setoguchi 《Open Journal of Fluid Dynamics》 2013年第2期36-41,共6页
Wells turbine has inherent disadvantages in comparison with conventional turbines: relative low efficiency at high flow coefficient and poor starting characteristics. To solve these problems, the authors propose Wells... Wells turbine has inherent disadvantages in comparison with conventional turbines: relative low efficiency at high flow coefficient and poor starting characteristics. To solve these problems, the authors propose Wells turbine with booster turbine for wave energy conversion, in order to improve the performance in this study. This turbine consists of three parts: a large Wells turbine, a small impulse turbine with fixed guide vanes for oscillating airflow, and a generator. It was conjectured that, by coupling the two axial flow turbines together, pneumatic energy from oscillating airflow is captured by Wells turbine at low flow coefficient and that the impulse turbine gets the energy at high flow coefficient. As the first step of this study on the proposed turbine topology, the performance of turbines under steady flow conditions has been investigated experimentally by model testings. Furthermore, we estimate mean efficiency of the turbine by quasi-steady analysis. 展开更多
关键词 Fluid MACHINERY WELLS TURBINE IMPULSE TURBINE wave energy conversion OCEAN Engineering
下载PDF
A Study on Fluidic Diode for Wave Energy Conversion-Effect of Bypass Geometry on the Turbine Performance 被引量:1
6
作者 Keito Matsumoto Manabu Takao +2 位作者 Shinya Okuhara Miah Md. Ashraful Alam Yoichi Kinoue 《Open Journal of Fluid Dynamics》 2020年第3期270-278,共9页
A twin-impulse turbine for bi-directional flow has been developed for wave energy converter. However, the previous studies elucidated that the mean efficiency of the twin turbine is much lower than that of the impulse... A twin-impulse turbine for bi-directional flow has been developed for wave energy converter. However, the previous studies elucidated that the mean efficiency of the twin turbine is much lower than that of the impulse turbine for a unidirectional flow because a portion of airflow passes through the reverse flow turbine whose efficiency is very low. Therefore, a fluidic diode was adopted in the twin-impulse turbine in order to reduce the air flow through the reverse flow turbine. In this study, the rectification effect of the fluidic diode was investigated where a bypass is introduced into a blunt body. A computational fluid dynamics (CFD) analysis was conducted to investigate the effect of fluidic diodes on the turbine performance. In this analysis, RANS equations were used as the governing equations and the standard <em>k-ε</em> model was used as the turbulence model. The computational domain is composed of a circular tube and fluidic diode, and the domain meshed with an approximately 1.5 million mesh elements. As a result, it was found that the rectification effect of the fluidic diode is enhanced by installing a blunt body with a bypass hole of 5<span style="white-space:nowrap;">&deg;</span> taper angle. 展开更多
关键词 Fluidic Diode wave energy conversion Twin-Impulse Turbine CFD Analysis
下载PDF
The research on direct-drive wave energy conversion system and performance optimization
7
作者 CHEN Zhongxian YU Haitao HU Minqiang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第9期178-183,共6页
A direct-drive wave energy conversion system based on a three-phase permanent magnet tubular linear generator (PMTLG) and a heaving buoy is proposed to convert wave energy into electrical energy. Sufficient experime... A direct-drive wave energy conversion system based on a three-phase permanent magnet tubular linear generator (PMTLG) and a heaving buoy is proposed to convert wave energy into electrical energy. Sufficient experimental methods are adopted to compare the computer simulations, the validity of which is verified by the experiment results from a wave tank laboratory. In the experiment, the motion curves of heaving buoy are with small fluctuations, mainly caused by the PMTLG's detent force. For the reduction of these small fluctuations and a maximum operational efficiency of the direct-drive wave energy conversion system, the PMTLG's detent force minimization technique and the heaving buoy optimization will be discussed. It is discovered that the operational efficiency of the direct-drive wave energy conversion system increases dramatically after optimization. The experiment and optimization results will provide useful reference for the future research on ocean wave energy conversion system. 展开更多
关键词 wave energy conversion linear generator detent force minimization technique heaving buoy optimization
下载PDF
The energy conversion rates from eddies and mean fl ow into internal lee waves in the global ocean
8
作者 Bing HAN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第4期1304-1313,共10页
Internal lee waves play an important role in transferring energy from eddies to small scale mixing.However,the energy conversion from eddies into lee waves in the global ocean remains poorly understood.Conversion rate... Internal lee waves play an important role in transferring energy from eddies to small scale mixing.However,the energy conversion from eddies into lee waves in the global ocean remains poorly understood.Conversion rates from eddies and from mean fl ow in the global ocean were diff erentiated using single beam sounding data,stratifi cation from climatology,eddy velocity,and mean fl ow from a global ocean model.The global integral energy conversion from eddies is estimated to be 0.083 TW and is almost twice as that from the mean fl ow.A new method was developed to study the uncertainties of energy conversion caused by dealing with the topographic data.Results show that diff erent data processing procedures,and the resolution and accuracy of topographic data have a signifi cant impact on the estimated global energy conversion. 展开更多
关键词 internal lee waves EDDIES mean flow energy conversion TOPOGRAPHY
下载PDF
A Twin Unidirectional Impulse Turbine for Wave Energy Conversion
9
作者 Shinya Okuhara Manabu Takao +1 位作者 Akiyasu Takami Toshiaki Setoguchi 《Open Journal of Fluid Dynamics》 2012年第4期343-347,共5页
A twin unidirectional impulse turbine has been proposed in order to enhance the performance of wave energy plant. This turbine system uses two unidirectional impulse turbines and their flow direction is different each... A twin unidirectional impulse turbine has been proposed in order to enhance the performance of wave energy plant. This turbine system uses two unidirectional impulse turbines and their flow direction is different each other. However, the effect of guide vane solidity on the turbine characteristics has not been clarified to date. The performances of a uni- directional impulse turbine under steady flow conditions were investigated experimentally by using a wind tunnel with large piston/cylinder in this study. Then, mean efficiency of the twin impulse turbine in bidirectional airflow has been estimated by a quasi-steady analysis using experimental results in order to investigate the effect of guide vane solidity on the performance. 展开更多
关键词 Fluid Machinery IMPULSE TURBINE wave energy conversion OCEAN energy
下载PDF
CHARACTERISTICS OF GRAVITY WAVE PROPAGATION AND ENERGY CONVERSION IN A SUDDEN HEAVY RAINFALL EVENT
10
作者 ZHAO Gui-xiang WANG Yi-jie WANG Xiao-li 《Journal of Tropical Meteorology》 SCIE 2018年第3期369-384,共16页
In this paper, a sudden heavy rainfall event is analyzed, which occurred over the Yellow River midstream during 5-6 August 2014. We used observational, NCEP/NCAR reanalysis, high-resolution satellite, and numerical si... In this paper, a sudden heavy rainfall event is analyzed, which occurred over the Yellow River midstream during 5-6 August 2014. We used observational, NCEP/NCAR reanalysis, high-resolution satellite, and numerical simulation data. The main results are as follows. Under an unfavorable environmental circulation, inadequate water vapor and unfavorable dynamic conditions but sufficient energy, a local sudden heavy rainfall was caused by the release of strong unstable energy that was triggered by cold air transport into middle and lower layers and the propagation of gravity waves. The distributions of rain area, rain clusters, and 10-minute rainfall showed typical mesoscale and microscale fluctuation characteristics. In the mesoscale rain area or upstream, there was a quasi-stationary wave of mesoscale gravity waves with their propagation downstream. In the course of propagation from southwest to northeast,the wavelength became longer and the amplitude attenuated. In the various phases of gravity wave development, there were evident differences in the direction of the wave front. Wave energy was mainly in the lower layers. Unstable vertical wind shear at heights of 1-6 km provided fluctuation energy for the gravity waves. The mechanisms of heavy rainfall formation were different at Linyou and Hancheng stations. Diabatic heating was the main source of disturbed effective potential energy at Linyou. The explosive short-period strong precipitation was caused by the release of strong effective potential energy triggered by the gravity waves, and its development and propagation after that energy maximized. In contrast, the latent heat release of upstream precipitation was the main source of disturbed effective potential energy at Hancheng. This formed a positive feedback mechanism that produced continuous precipitation. In the studied event, the development of westerly belt systems had disturbed the wind field. The contribution of kinetic energy generated by this disturbance could not be ignored. The Froude number, mountain shape parameter, and ratio between mountain height and temperature inversion layer thickness had various effects of atmosphere and terrain on mesoscale and microscale mountain waves. In upper and lower layers, there were five airflows that were strengthened by the terrain. All these had important influences on local heavy rainfall at Linyou and Hancheng stations. 展开更多
关键词 heavy rainfall gravity wave energy conversion terrain fluctuation
下载PDF
A Counter-Rotating Impulse Turbine for Wave Energy Conversion
11
作者 Manabu Takao Kohei Yamada +3 位作者 Shinya Okuhara M. M. Ashraful Alam Yoichi Kinoue Toshiaki Setoguchi 《Open Journal of Fluid Dynamics》 2018年第4期435-442,共8页
Wave energy can be converted to the electrical energy by using a wave energy converter. The wave energy converter with oscillating water column (OWC) is one of the most promising devices because of its simple structur... Wave energy can be converted to the electrical energy by using a wave energy converter. The wave energy converter with oscillating water column (OWC) is one of the most promising devices because of its simple structure and easy maintenance. In this device, an oscillating water column due to the wave motion is used to drive an air column. An air turbine is used to convert the pneumatic energy of this bi-directional airflow into the mechanical energy. The counter-rotating impulse turbine for wave energy conversion has been proposed and tested so far, and the average efficiency has been shown to about 0.3. On the contrary, in another offshore experiment, it has been reported that the power generation efficiency of this turbine is larger than Wells turbine in case of small waves. However, there is a scarcity of the detailed characteristics data of counter-rotating impulse turbine. In a previous study, the authors investigated the effect of rotor blade solidity and setting angle of guide vane on the performance of this turbine, and they clarified that the efficiency of this turbine is higher than impulse turbine with single rotor in the range of high flow coefficients. The present study aimed to investigate the effect of rotor blade profile on the turbine performance by using the computation fluid dynamic (CFD) analysis. The inner and outer angles of turbine rotor blade are changed in the range of 50° to 70°. The commercial CFD software of SCRYU/Tetra of Cradle Co. Ltd. was used in the present work. The Reynolds averaged Navier-Stokes (RANS) equations were used as the governing equations and the low Reynold’s number SST k-ω model was used to predict the turbulent stresses. As a result, it was found that the inner angle of γ = 70° and the outer angle of γ = 60° of the turbine rotor blades can give the best turbine efficiency and it shows the efficiency close to the impulse turbine with single rotor, even in the range of low flow coefficients. 展开更多
关键词 Air TURBINE CFD Fluid MACHINERY OSCILLATING Water COLUMN (OWC) wave energy conversion
下载PDF
Experimental Investigation on a Fixed Oscillating Water Column with an Impulse Turbine for Wave Energy Conversion
12
作者 Tengen Murakami Yasutaka Imai +1 位作者 Shuichi Nagata Manabu Takao 《Journal of Energy and Power Engineering》 2020年第1期16-25,共10页
A fixed oscillating water column(OWC)-type wave energy converter consists of an air chamber,an air turbine and a generator.The energy conversion processes are the primary conversion in an air chamber and the secondary... A fixed oscillating water column(OWC)-type wave energy converter consists of an air chamber,an air turbine and a generator.The energy conversion processes are the primary conversion in an air chamber and the secondary conversion of the turbine.For the practical use,it is necessary to develop a design method which can consider the incident wave motion,the motion of the internal free surface affected in the structure such as a partly submerged wall,the fluctuation of air pressure in an air chamber,and the rotation of the air turbine.At here,the authors carried out the wave tank tests using the model OWC equipped with the impulse turbine and a generator to obtain the experimental data needed to make this design method.As the result,the efficiencies of the three cases with different speed ratio between generator and turbine,and the effects of the curtain wall depth and the wave length on the energy conversion performance were clarified. 展开更多
关键词 Impulse turbine oscillating water column primary conversion secondary conversion wave energy
下载PDF
Adaptive Fuzzy Sliding Mode Controller for Grid Interface Ocean Wave Energy Conversion
13
作者 Adel A. A. Elgammal 《Journal of Intelligent Learning Systems and Applications》 2014年第2期53-69,共17页
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat... This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions. 展开更多
关键词 GRID integration wave energy conversion Systems Self-Excited Induction Generator (SEIG) Vector CONTROL Genetic Algorithm (GA) Particle SWARM Optimization (PSO) SLIDING Mode CONTROL (SMC) Fuzzy Logic CONTROL (FLC) MEMBERSHIP Function Tuning
下载PDF
Experimental Investigation on the Hydrodynamic Performance of A Wave Energy Converter 被引量:5
14
作者 ZHENG Xiong-bo MA Yong +2 位作者 ZHANG Liang JIANG Jin LIU Heng-xu 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期370-377,共8页
Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experi... Wave energy is an important type of marine renewable energy. A wave energy converter (WEC) moored with two floating bodies was developed in the present study. To analyze the dynamic performance of the WEC, an experimental device was designed and tested in a tank. The experiment focused on the factors which impact the motion and energy conversion performance of the WEC. Dynamic performance was evaluated by the relative displacements and velocities of the oscillator and carrier which served as the floating bodies of WEC. Four factors were tested, i.e. wave height, wave period, power take-off (PTO) damping, and mass ratio (RM) of the oscillator and carrier. Experimental results show that these factors greatly affect the energy conversion performance, especially when the wave period matches RM and PTO damping. According to the results, we conclude that: (a) the maximization of the relative displacements and velocities leads to the maximization of the energy conversion efficiency; (b) the larger the wave height, the higher the energy conversion efficiency will be; (c) the relationships of energy conversion efficiency with wave period, PTO damping, and RM are nonlinear, but the maximum efficiency is obtained when these three factors are optimally matched. Experimental results demonstrated that the energy conversion efficiency reached the peak at 28.62% when the wave height was 120 mm, wave period was 1.0 s, RM was 0.21, and the PTO damping was corresponding to the resistance of 100 Ω. 展开更多
关键词 wave energy energy conversion experiment HYDRODYNAMIC floating body
下载PDF
Analysis of the Hydrodynamic Performance of an Oyster Wave Energy Converter Using Star-CCM+ 被引量:3
15
作者 Zheng Yuan Liang Zhang +2 位作者 Binzhen Zhou Peng Jin Xiongbo Zheng 《Journal of Marine Science and Application》 CSCD 2019年第2期153-159,共7页
A two-dimensional numerical Computational Fluid Dynamics(CFD)model is established on the basis of viscous CFD theory to investigate the motion response and power absorption performance of a bottom-hinged flap-type wav... A two-dimensional numerical Computational Fluid Dynamics(CFD)model is established on the basis of viscous CFD theory to investigate the motion response and power absorption performance of a bottom-hinged flap-type wave energy converter(WEC)under regular wave conditions.The convergence study of mesh size and time step is performed to ensure that wave height and motion response are sufficiently accurate.Wave height results reveal that the attenuation of wave height along the wave tank is less than 5%only if the suitable mesh size and time step are selected.The model proposed in this work is verified against published experimental and numerical models.The effects of mechanical damping,wave height,wave frequency,and water depth on the motion response,power generation,and energy conversion efficiency of the flap-type WEC are investigated.The selection of the appropriate mechanical damping of the WEC is crucial for the optimal extraction of wave power.The optimal mechanical damping can be readily predicted by using potential flow theory.It can then be verified by applying CFD numerical results.In addition,the motion response and the energy conversion efficiency of the WEC decrease as the incident wave height increases because the strengthened nonlinear effect of waves intensifies energy loss.Moreover,the energy conversion efficiency of theWEC decreases with increasing water depth and remains constant as the water depth reaches a critical value.Therefore,the selection of the optimal parameters during the design process is necessary to ensure that the WEC exhibits the maximum energy conversion efficiency. 展开更多
关键词 wave energy converter Oyster.energy conversion efficiency OptimumPTO DAMPING Nonlinear REGULAR wave
下载PDF
Performance of Two Types of Mooring Systems in the Heave Motion of a Two-body Floating Wave Energy Converter 被引量:2
16
作者 Mahdi N.Berenjkoob Mahmoud Ghiasi C.Guedes Soares 《Journal of Marine Science and Application》 CSCD 2019年第1期38-47,共10页
This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of th... This work investigated the influence of two types of mooring systems on the hydrodynamic performance of a two-body floating wave energy converter(WEC). It also investigated the effects of the physical parameters of the mooring system on the amount of extractable power from incident waves in the frequency domain. The modeled converter comprised a floating body(a buoy), a submerged body with two mooring systems, and a coupling system for two bodies. The coupling system was a simplified power take-off system that was modeled by a linear spring-damper model. The tension leg mooring system could drastically affect the heave motion of the submerged body of the model and increase relative displacement between the two bodies. The effects of the stiffness parameter of the mooring system on power absorption exceeded those of the pretension tendon force. 展开更多
关键词 Two-body wec Three-point MOORING wave energy Tension-leg MOORING system MOORING parameters
下载PDF
Scheduling and control co-design for Networked Wind Energy Conversion Systems 被引量:4
17
作者 Zhihong Huo Zhixue Zhang 《Global Energy Interconnection》 2019年第4期328-335,共8页
Fieldbus, industrial Ethernet that is simple, reliable, economical, and practical, is widely used in Wind Energy Conversion Systems(WECSs). These techniques belong to the field of networked control systems. Network em... Fieldbus, industrial Ethernet that is simple, reliable, economical, and practical, is widely used in Wind Energy Conversion Systems(WECSs). These techniques belong to the field of networked control systems. Network embedding to Wind Energy Conversion Systems brings many new challenges. Implementing a control system over a communication network causes inevitable time delays that may degrade performance and can even cause instability. This work addresses challenges related to the reliable control of wind energy conversion systems, based on the theoretical framework of networked control systems. A type of WECS with network-induced delay and packet dropout is modeled and adjustable deadbands are explored as a solution to reduce network traffic in WECSs. A method to study the reliable control of WECSs is presented, which takes into account system response as well as the network environment. After detailed theoretical analysis, simulation results are provided, which further demonstrate the feasibility of the proposed scheme. 展开更多
关键词 Wind energy conversion System(wecS) NETWORKED Control System(NCS) TIME-DELAY Deadband Package-dropout
下载PDF
Hydrodynamic Analysis and Power Conversion for Point Absorber WEC with Two Degrees of Freedom Using CFD 被引量:2
18
作者 GUO Wei ZHOU Ya-hui +1 位作者 ZHANG Wan-chao ZHAO Qiao-sheng 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期718-729,共12页
Point absorber wave energy device with multiple degrees of freedom(DOF) is assumed to have a better absorption ability of mechanical energy from ocean waves. In this paper, a coaxial symmetric articulated point absorb... Point absorber wave energy device with multiple degrees of freedom(DOF) is assumed to have a better absorption ability of mechanical energy from ocean waves. In this paper, a coaxial symmetric articulated point absorber wave energy converter with two degrees of freedom is presented. The mechanical equations of the oscillation buoy with power take-off mechanism(PTO) in regular waves are established. The three-dimensional numerical wave tank is built in consideration of the buoy motion based upon the CFD method. The appropriate simulation elements are selected for the buoy and wave parameters. The feasibility of the CFD method is verified through the contrast between the numerical simulation results of typical wave conditions and test results. In such case, the buoy with single DOF of heave, pitch and their coupling motion considering free(no PTO damping) and damped oscillations in regular waves are simulated by using the verified CFD method respectively. The hydrodynamic and wave energy conversion characteristics with typical wave conditions are analyzed. The numerical results show that the heave and pitch can affect each other in the buoy coupling motion, hydrodynamic loads, wave energy absorption and flow field.The total capture width ratio with two coupled DOF motion is higher than that with a single DOF motion. The wave energy conversion of a certain DOF motion may be higher than that of the single certain DOF motion even though the wave is at the resonance period. When the wave periods are high enough, the interaction between the coupled DOF motions can be neglected. 展开更多
关键词 CFD simulation wave energy conversion numerical tank coupling motion capture width ratio
下载PDF
Study of Hydrodynamic Characteristics of A Sharp Eagle Wave Energy Converter 被引量:2
19
作者 ZHANG Ya-qun 《China Ocean Engineering》 SCIE EI CSCD 2017年第3期364-369,共6页
According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple ... According to Newton's Second Law and the microwave theory, mechanical analysis of multiple buoys which form Sharp Eagle wave energy converter (WEC) is carried out. The movements of every buoy in three modes couple each other when they are affected with incident waves. Based on the above, mechanical models of the WEC are established, which are concerned with fluid forces, damping forces, hinge forces, and so on. Hydrodynamic parameters of one buoy are obtained by taking the other moving buoy as boundary conditions. Then, by taking those hydrodynamic parameters into the mechanical models, the optimum external damping and optimal capture width ratio are calculated out. Under the condition of the optimum external damping, a plenty of data are obtained, such as the displacements amplitude of each buoy in three modes (sway, heave, pitch), damping forces, hinge forces, and speed of the hydraulic cylinder. Research results provide theoretical references and basis for Sharp Eagle WECs in the design and manufacture. 展开更多
关键词 Sharp Eagle wave energy converter wec HYDRODYNAMICS capture width ratio optimal external damping optimization design
下载PDF
CFD Simulation and Experimental Study of a New Elastic Blade Wave Energy Converter 被引量:4
20
作者 Chongfei Sun Jianzhong Shang +3 位作者 Zirong Luo Xin Li Zhongyue Lu Guoheng Wu 《Fluid Dynamics & Materials Processing》 EI 2020年第6期84-96,共13页
Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient ... Small moving vehicles represent an important category of marine engineering tools and devices(equipment)typically used for ocean resource detection and maintenance of marine rights and interests.The lack of efficient power supply modes is one of the technical bottlenecks restricting the effective utilisation of this type of equipment.In this work,the performance characteristics of a new type of elastic-blade/wave-energy converter(EBWEC)and its core energy conversion component(named wave energy absorber)are comprehensively studied.In particular,computational fluid dynamics(CFD)simulations and experiments have been used to analyze the hydrodynamics and performance characteristics of the EBWEC.The pressure cloud diagrams relating to the surface of the elastic blade were obtained through two-way fluid-solid coupling simulations.The influence of blade thickness and relative speed on the performance characteristics of EBWEC was analyzed accordingly.A prototype of the EBWEC and its bucket test platform were also developed.The power characteristics of the EBWEC were analyzed and studied by using the blade thickness and motion cycle as control variables.The present research shows that the EBWEC can effectively overcome the performance disadvantages related to the transmission shaft torque load and power curve fluctuations of rigid blade wave energy converters(RBWEC). 展开更多
关键词 Elastic blade wave energy converter structural design energy conversion mechanism computational fluid dynamics simulation EXPERIMENT hydrodynamic characteristics
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部