The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the l...The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the lack of engineering experience on the drivability of large-diameter cylinders under multiple vibratory hammers,predicting the penetration rate and time of steel cylinders is an open challenge that has a considerable impact on the construction control of the HZMB.In this study,the vibratory penetration of large-diameter steel cylinders in the HZMB is investigated based on geological surveys,field monitoring,and drivability analysis.The vibratory penetration rate,installation accuracy,and dynamic responses of the steel cylinders at both the eastern and western artificial islands are analyzed.The dynamic soil resistance has a great influence on the cylinder drivability.However,the current design methods for estimating the vibratory driving soil resistance are proven inaccurate without considering the scale effects.Therefore,a modified method with a normalized effective area ratio A_(r,eff)is proposed in this study to calculate the vibratory soil resistance for open-ended thin-wall cylinders under unplugged conditions.Considering the scale effects on the vibratory driving soil resistance,the proposed method leads to closer results to the measured data,providing a reference for future engineering practice.展开更多
Field measurements of driving resistances and heights of soil core during driving were made offshore and onshore of steel pipe piles. Measured data show that the height of soil core varies differently for piles of dif...Field measurements of driving resistances and heights of soil core during driving were made offshore and onshore of steel pipe piles. Measured data show that the height of soil core varies differently for piles of different diameters with the increase of penetration. Dynamic plugging could be assumed never to occur for steel pipe piles with diameters over 900 mm. Soil resistances at the time of continuous driving (SRD) are back analyzed from blow counts with an empirical distribution of resistances suppported by many early dynamic measurements. A method of predicting SRD is finally suggested.展开更多
基金supported by the National Natural Science Foundation of China(52001267)Tianjin Port Engineering Institute Co.,Ltd.,and Eunsung O&C Offshore Marine and Construction(EUNSUNG19EG01).
文摘The Hong Kong–Zhuhai–Macao Bridge(HZMB)involved the installation of 120 mega-cylinders with a diameter of 22 m,weights up to 513 t,and penetration depths up to 33 m using an eight-vibratory hammer group.Due to the lack of engineering experience on the drivability of large-diameter cylinders under multiple vibratory hammers,predicting the penetration rate and time of steel cylinders is an open challenge that has a considerable impact on the construction control of the HZMB.In this study,the vibratory penetration of large-diameter steel cylinders in the HZMB is investigated based on geological surveys,field monitoring,and drivability analysis.The vibratory penetration rate,installation accuracy,and dynamic responses of the steel cylinders at both the eastern and western artificial islands are analyzed.The dynamic soil resistance has a great influence on the cylinder drivability.However,the current design methods for estimating the vibratory driving soil resistance are proven inaccurate without considering the scale effects.Therefore,a modified method with a normalized effective area ratio A_(r,eff)is proposed in this study to calculate the vibratory soil resistance for open-ended thin-wall cylinders under unplugged conditions.Considering the scale effects on the vibratory driving soil resistance,the proposed method leads to closer results to the measured data,providing a reference for future engineering practice.
文摘Field measurements of driving resistances and heights of soil core during driving were made offshore and onshore of steel pipe piles. Measured data show that the height of soil core varies differently for piles of different diameters with the increase of penetration. Dynamic plugging could be assumed never to occur for steel pipe piles with diameters over 900 mm. Soil resistances at the time of continuous driving (SRD) are back analyzed from blow counts with an empirical distribution of resistances suppported by many early dynamic measurements. A method of predicting SRD is finally suggested.