This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differe...This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics.展开更多
In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ...In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.展开更多
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th...In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.展开更多
The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-eleme...The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.展开更多
In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are...In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.展开更多
This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite tim...This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite time to the mixed problems with respect to Neumann boundary and Dirichlet boundary for various nonlinear conditions and initial value conditions which usually meet.展开更多
The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained...The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained and exact separable solutions to some of the resulting equations are constructed.展开更多
In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a...In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a priori estimates of solution,we get theexistence of globally smooth solution.展开更多
This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows...This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L^∞ norms, it analyzes the relative errors in approximate solutions.展开更多
This paper studies the Riemann problem for a system of nonlinear degenerate wave equations in elasticity. Since the stress function is neither convex nor concave, the shock condition is degenerate. By introducing a de...This paper studies the Riemann problem for a system of nonlinear degenerate wave equations in elasticity. Since the stress function is neither convex nor concave, the shock condition is degenerate. By introducing a degenerate shock under the generalized shock condition, the global solutions are constructively obtained case by case.展开更多
Conservation laws for a class of variable coefficient nonlinear wave equations with power nonlinearities are investigated. The usual equivalence group and the generalized extended one including transformations which a...Conservation laws for a class of variable coefficient nonlinear wave equations with power nonlinearities are investigated. The usual equivalence group and the generalized extended one including transformations which are nonlocal with respect to arbitrary elements are introduced. Then, using the most direct method, we carry out a classification of local conservation laws with characteristics of zero order for the equation under consideration up to equivalence relations generated by the generalized extended equivalence group. The equivalence with respect to this group and the correct choice of gauge coefficients of the equations play the major roles for simple and clear formulation of the final results.展开更多
Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimen...Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.展开更多
In this paper we consider the Riemann problem for the nonlinear degenerate wave equations. This problem has been studied by Sun and Sheng, however the so-called degenerate shock solutions did not satisfy the R-H condi...In this paper we consider the Riemann problem for the nonlinear degenerate wave equations. This problem has been studied by Sun and Sheng, however the so-called degenerate shock solutions did not satisfy the R-H condition. In the present paper, the Riemann solutions of twelve regions in the v - u plane are completely constructed by the Liu-entropy condition. Our Riemann solutions are very different to that one obtained by Sun and Sheng in some regions.展开更多
Seeking exact analytical solutions of nonlinear evolution equations is of fundamental importance in mathematlcal physics. In this paper, based on a constructive algorithm and symbolic computation, abundant new exact s...Seeking exact analytical solutions of nonlinear evolution equations is of fundamental importance in mathematlcal physics. In this paper, based on a constructive algorithm and symbolic computation, abundant new exact solutions of the (2+1)-dimensional dispersive long wave equations are obtained, among which there are soliton-like solutions, mult-soliton-like solutions and formal periodic solutions, etc. Certain special solutions are considered and some interesting localized structures are revealed.展开更多
In this article, we consider the long time behavior of the solutions to stochastic wave equations driven by a non-Gaussian Lévy process. We shall prove that under some appropriate conditions, the exponential stab...In this article, we consider the long time behavior of the solutions to stochastic wave equations driven by a non-Gaussian Lévy process. We shall prove that under some appropriate conditions, the exponential stability of the solutions holds. Finally, we give two examples to illustrate our results.展开更多
The authors consider the Cauchy problem for the following nonlinear wave equationswhere x ∈ R3, t ≥ 0, ε > 0 is a small parameter, and obtain the sharp bounds for the lifespan of solution to (0.1). Specially, it...The authors consider the Cauchy problem for the following nonlinear wave equationswhere x ∈ R3, t ≥ 0, ε > 0 is a small parameter, and obtain the sharp bounds for the lifespan of solution to (0.1). Specially, it is proved that there exist two constants C1 and C2, which are independent of ε, then the lifespan T(ε) satisfies the folowing inequalities展开更多
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor...With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.展开更多
The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time peri...The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray_Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.12404507)the Natural Science Research of Jiangsu Higher Education Institutions of China(Grant No.24KJB140013)the Scientific Startup Foundation of Nanjing Normal University(Grant No.184080H201B49).
文摘This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics.
文摘In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates.
基金supported by project XJZ2023050044,A2309002 and XJZ2023070052.
文摘In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects.
基金sponsored by the National Natural Science Foundation of China Research(Grant No.41274138)the Science Foundation of China University of Petroleum(Beijing)(No.KYJJ2012-05-02)
文摘The perfectly matched layer (PML) is a highly efficient absorbing boundary condition used for the numerical modeling of seismic wave equation. The article focuses on the application of this technique to finite-element time-domain numerical modeling of elastic wave equation. However, the finite-element time-domain scheme is based on the second- order wave equation in displacement formulation. Thus, the first-order PML in velocity-stress formulation cannot be directly applied to this scheme. In this article, we derive the finite- element matrix equations of second-order PML in displacement formulation, and accomplish the implementation of PML in finite-element time-domain modeling of elastic wave equation. The PML has an approximate zero reflection coefficients for bulk and surface waves in the finite-element modeling of P-SV and SH wave propagation in the 2D homogeneous elastic media. The numerical experiments using a two-layer model with irregular topography validate the efficiency of PML in the modeling of seismic wave propagation in geological models with complex structures and heterogeneous media.
文摘In this paper the decay of global solutions to some nonlinear dissipative wave equations are discussed, which based on the method of prior estimate technique and a differenece inequality.
基金Project supported by the Anhui Key Laboratory of Information Materials and Devices (Anhui University),China
文摘In this paper, we make use of the auxiliary equation and the expanded mapping methods to find the new exact periodic solutions for (2+1)-dimensional dispersive long wave equations in mathematical physics, which are expressed by Jacobi elliptic functions, and obtain some new solitary wave solutions (m → 1). This method can also be used to explore new periodic wave solutions for other nonlinear evolution equations.
文摘This paper deals with the initial-boundary value mixed problems for nonlinear wave equations. By introducing the 'blowing-up facts K(u,u_i)', We may discuss the blowing up behaviours of solutions in finite time to the mixed problems with respect to Neumann boundary and Dirichlet boundary for various nonlinear conditions and initial value conditions which usually meet.
文摘The generalized conditional symmetry approach is applied to study the variable separation of the extended wave equations. Complete classification of those equations admitting functional separable solutions is obtained and exact separable solutions to some of the resulting equations are constructed.
文摘In the present paper, we investigate the well-posedness of the global solutionfor the Cauchy problem of generalized long-short wave equations. Applying Kato's methodfor abstract quasi-linear evolution equations and a priori estimates of solution,we get theexistence of globally smooth solution.
基金The study is supported by National Natural Science Foundation of China (10131050)the Educational Ministry of Chinathe Shanghai Science and Technology Committee foundation (03QMH1407)
文摘This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L^∞ norms, it analyzes the relative errors in approximate solutions.
基金Project supported by the National Natural Science Foundation of China(No.10971130)the Shanghai Leading Academic Dissipline Project(No.J50101)
文摘This paper studies the Riemann problem for a system of nonlinear degenerate wave equations in elasticity. Since the stress function is neither convex nor concave, the shock condition is degenerate. By introducing a degenerate shock under the generalized shock condition, the global solutions are constructively obtained case by case.
基金Project supported by the National Key Basic Research Program of China (Grant No.2010CB126600)the National Natural Science Foundation of China (Grant No.60873070)+3 种基金the Shanghai Leading Academic Discipline Project,China (Grant No.B114)the Postdoctoral Science Foundation of China (Grant No.20090450067)the Shanghai Postdoctoral Sustentation Foundation,China (Grant No.09R21410600)the Fundamental Research Funds for the Central Universities,China (Grant No.WM0911004)
文摘Conservation laws for a class of variable coefficient nonlinear wave equations with power nonlinearities are investigated. The usual equivalence group and the generalized extended one including transformations which are nonlocal with respect to arbitrary elements are introduced. Then, using the most direct method, we carry out a classification of local conservation laws with characteristics of zero order for the equation under consideration up to equivalence relations generated by the generalized extended equivalence group. The equivalence with respect to this group and the correct choice of gauge coefficients of the equations play the major roles for simple and clear formulation of the final results.
基金Supported by the National Key Basic Research Project of China under Grant No.2010CB126600the National Natural Science Foundation of China under Grant No.60873070+2 种基金Shanghai Leading Academic Discipline Project No.B114the Postdoctoral Science Foundation of China under Grant No.20090450067Shanghai Postdoctoral Science Foundation under Grant No.09R21410600
文摘Lie symmetry reduction of some truly "variable coefficient" wave equations which are singled out from a class of (1 + 1)-dimensional variable coefficient nonlinear wave equations with respect to one and two-dimensional algebras is carried out. Some classes of exact solutions of the investigated equations are found by means of both the reductions and some modern techniques such as additional equivalent transformations and hidden symmetries and so on. Conditional symmetries are also discussed.
基金Supported by the National Natural Science Foundation of China (11171340)
文摘In this paper we consider the Riemann problem for the nonlinear degenerate wave equations. This problem has been studied by Sun and Sheng, however the so-called degenerate shock solutions did not satisfy the R-H condition. In the present paper, the Riemann solutions of twelve regions in the v - u plane are completely constructed by the Liu-entropy condition. Our Riemann solutions are very different to that one obtained by Sun and Sheng in some regions.
基金The project supported by the China Postdoctoral Science Foundation under Grant No. 2004036086, K.C. Wong Education Foundation, Hong Kong, and partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000 . The authors are grateful to professor Gao Xiao-Shan for his enthusiastic guidance and help.
文摘Seeking exact analytical solutions of nonlinear evolution equations is of fundamental importance in mathematlcal physics. In this paper, based on a constructive algorithm and symbolic computation, abundant new exact solutions of the (2+1)-dimensional dispersive long wave equations are obtained, among which there are soliton-like solutions, mult-soliton-like solutions and formal periodic solutions, etc. Certain special solutions are considered and some interesting localized structures are revealed.
基金supported by National Natural Science Foundation of China(11571190)the Fundamental Research Funds for the Central Universities+3 种基金supported by the China Scholarship Council(201807315008)National Natural Science Foundation of China(11501565)the Youth Project of Humanities and Social Sciences of Ministry of Education(19YJCZH251)supported by National Natural Science Foundation of China(11701084 and 11671084)
文摘In this article, we consider the long time behavior of the solutions to stochastic wave equations driven by a non-Gaussian Lévy process. We shall prove that under some appropriate conditions, the exponential stability of the solutions holds. Finally, we give two examples to illustrate our results.
基金This work was supported by South-West Jiaotong University Foundation
文摘The authors consider the Cauchy problem for the following nonlinear wave equationswhere x ∈ R3, t ≥ 0, ε > 0 is a small parameter, and obtain the sharp bounds for the lifespan of solution to (0.1). Specially, it is proved that there exist two constants C1 and C2, which are independent of ε, then the lifespan T(ε) satisfies the folowing inequalities
基金supported by the Scientific Research Foundation of Beijing Information Science and Technology UniversityScientific Creative Platform Foundation of Beijing Municipal Commission of Education
文摘With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
文摘The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray_Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.