To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order vel...To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.展开更多
The complexity of near surface intensifies the diversity of seismic wave fields, which makes study on near surface wavefields important in many aspects. The strong absorption of low velocity layer can affect the resol...The complexity of near surface intensifies the diversity of seismic wave fields, which makes study on near surface wavefields important in many aspects. The strong absorption of low velocity layer can affect the resolution of seismic data, and free boundary can cause surface wave. Considering the above problems, we focus on the Rayleigh wavefields simulation using finite-difference wave equation of higher-order staggered grids and PML boundary conditions. Free boundary, buried source and overlying low velocity layer are taken into consideration and point explosion source is adopted. Through some numerical simulation with different parameters, we quantitatively analyze relationship between wave intensity and source depth, as well as the energy variation with propagation and obtain some practical knowledge and conclusions.展开更多
A sedimentary geological model is established in order to study the seismic reflection characteristics of channel sand bodies. Synthetic seismic shot gathers are simulated using the acoustic wave equation and then are...A sedimentary geological model is established in order to study the seismic reflection characteristics of channel sand bodies. Synthetic seismic shot gathers are simulated using the acoustic wave equation and then are prestack time migrated. On the imaged data, the reflection characteristics and instantaneous attributes are analyzed and log-constrained impedance inversion is tested. Because of wave field interference, the experimental results show that seismic events do not definitely correspond to the channel sand bodies and that seismic modes of occurrence do not represent the actual ones. The seismic events formed by wave interference may lead to errors and pitfalls in sand body interpretation. The corresponding relations between instantaneous seismic attributes and sedimentary sands are not well established. Log-constrained impedance inversion improves the resolution of channel sands. However, if the inverted resolution is forced to be too high, artifacts related to the initial model may occur.展开更多
基金supported by the National High-Tech Research and Development Program of China(Grant No.2006AA06Z202)the Open Fund of the Key Laboratory of Geophysical Exploration of CNPC(Grant No.GPKL0802)+1 种基金the Graduate Student Innovation Fund of China University of Petroleum(East China)(Grant No.S2008-1)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0845)
文摘To deal with the numerical dispersion problem, by combining the staggeredgrid technology with the compact finite difference scheme, we derive a compact staggered- grid finite difference scheme from the first-order velocity-stress wave equations for the transversely isotropic media. Comparing the principal truncation error terms of the compact staggered-grid finite difference scheme, the staggered-grid finite difference scheme, and the compact finite difference scheme, we analyze the approximation accuracy of these three schemes using Fourier analysis. Finally, seismic wave numerical simulation in transversely isotropic (VTI) media is performed using the three schemes. The results indicate that the compact staggered-grid finite difference scheme has the smallest truncation error, the highest accuracy, and the weakest numerical dispersion among the three schemes. In summary, the numerical modeling shows the validity of the compact staggered-grid finite difference scheme.
基金support of the Major National Science and Technology Projects(No.2011ZX05006-002)the Fundamental Research Funds for the Central Universities of China(No.09CX04009A)
文摘The complexity of near surface intensifies the diversity of seismic wave fields, which makes study on near surface wavefields important in many aspects. The strong absorption of low velocity layer can affect the resolution of seismic data, and free boundary can cause surface wave. Considering the above problems, we focus on the Rayleigh wavefields simulation using finite-difference wave equation of higher-order staggered grids and PML boundary conditions. Free boundary, buried source and overlying low velocity layer are taken into consideration and point explosion source is adopted. Through some numerical simulation with different parameters, we quantitatively analyze relationship between wave intensity and source depth, as well as the energy variation with propagation and obtain some practical knowledge and conclusions.
基金National 973 Key Basic Research Development Program(No.2007CB209608)National 863 High Technology Research Development Program(No.2007AA06Z218)
文摘A sedimentary geological model is established in order to study the seismic reflection characteristics of channel sand bodies. Synthetic seismic shot gathers are simulated using the acoustic wave equation and then are prestack time migrated. On the imaged data, the reflection characteristics and instantaneous attributes are analyzed and log-constrained impedance inversion is tested. Because of wave field interference, the experimental results show that seismic events do not definitely correspond to the channel sand bodies and that seismic modes of occurrence do not represent the actual ones. The seismic events formed by wave interference may lead to errors and pitfalls in sand body interpretation. The corresponding relations between instantaneous seismic attributes and sedimentary sands are not well established. Log-constrained impedance inversion improves the resolution of channel sands. However, if the inverted resolution is forced to be too high, artifacts related to the initial model may occur.