By analysing the scatter diagrams of characteristic the wave height H and the period T on the basis of instrumental data from various ocean wave stations, we found that the conditional expectation and standard deviati...By analysing the scatter diagrams of characteristic the wave height H and the period T on the basis of instrumental data from various ocean wave stations, we found that the conditional expectation and standard deviation of wave period for a given wave height can be better predicted by using the equations of normal linear regression rather than by those based on the log- normal law. The latter was implied in Ochi' s bivariate log-normal model(Ochi. 1978) for the long-term joint distribution of H and T. With the expectation and standard deviation predicted by the normal linear regression equations and applying proper types of distribution, we have obtained the conditional distribution of T for given H. Then combining this conditional P(T / H) with long-term marginal distribution of the wave height P(H) we establish a new parameterized model for the long-term joint distribution P(H,T). As an example of the application of the new model we give a method for estimating wave period associated with an extreme wave height.展开更多
Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input...Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the south- ern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme Hs values is focus in E in the northem and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.展开更多
文摘By analysing the scatter diagrams of characteristic the wave height H and the period T on the basis of instrumental data from various ocean wave stations, we found that the conditional expectation and standard deviation of wave period for a given wave height can be better predicted by using the equations of normal linear regression rather than by those based on the log- normal law. The latter was implied in Ochi' s bivariate log-normal model(Ochi. 1978) for the long-term joint distribution of H and T. With the expectation and standard deviation predicted by the normal linear regression equations and applying proper types of distribution, we have obtained the conditional distribution of T for given H. Then combining this conditional P(T / H) with long-term marginal distribution of the wave height P(H) we establish a new parameterized model for the long-term joint distribution P(H,T). As an example of the application of the new model we give a method for estimating wave period associated with an extreme wave height.
基金supported by the National Natural Science Foundation of China (51279186)the Open Fund of the Shandong Province Key Laboratory of Ocean Engineering,Ocean University of China (201362045)
文摘Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the south- ern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme Hs values is focus in E in the northem and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.