The interaction between an atomic beam of two-level atoms and a standing wave light field has been studied by the exact solution of a time-dependent quantum system developed recently. When the initial atomic state is ...The interaction between an atomic beam of two-level atoms and a standing wave light field has been studied by the exact solution of a time-dependent quantum system developed recently. When the initial atomic state is choosen to be ground, we find that with the limit of zero detuning the atoms will oscillate between the upper and the lower levels with a decaying amplitude. The most interesting result obtained in this paper is when the initial atomic state is a particular superposition of the two levels, now the system does not oscillate at any time.展开更多
The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules. For a two-state system in laser fields, the populations on different vibrational l...The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules. For a two-state system in laser fields, the populations on different vibrational levels of the upper and lower electronic states are given by wavefunctions obtained by solving the Schrbdinger equation with the split- operator method. The calculation shows that the field parameters, such as intensity, wavelength, duration, and delay time etc. can have different influences on the vibrational population. By varying the laser parameters appropriately one can control the evolution of wave packet and so the vibrational population in each state, which will benefit the light manipulation of atomic and molecular processes.展开更多
基金This work was supported by the National Natural Science Foundation of China under Grant No. 10075302.
文摘The interaction between an atomic beam of two-level atoms and a standing wave light field has been studied by the exact solution of a time-dependent quantum system developed recently. When the initial atomic state is choosen to be ground, we find that with the limit of zero detuning the atoms will oscillate between the upper and the lower levels with a decaying amplitude. The most interesting result obtained in this paper is when the initial atomic state is a particular superposition of the two levels, now the system does not oscillate at any time.
基金Project supported by the Natural Science Foundation of Shandong Province of China (Grant No. Y2006A23)the National Basic Research Program of China (Grant No. 2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)
文摘The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules. For a two-state system in laser fields, the populations on different vibrational levels of the upper and lower electronic states are given by wavefunctions obtained by solving the Schrbdinger equation with the split- operator method. The calculation shows that the field parameters, such as intensity, wavelength, duration, and delay time etc. can have different influences on the vibrational population. By varying the laser parameters appropriately one can control the evolution of wave packet and so the vibrational population in each state, which will benefit the light manipulation of atomic and molecular processes.
基金supported by the Natural Science Foundation of Anhui Province of China(090412060)Natural Science Foundation of the Education Committee of Anhui Province of China(KJ2008A029)