Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is i...Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is introduced. Using both foregoing gravitational wave generator and gravitational wave detector (i.e. laser interferometric gravitational wave antenna), the gravitational communication system can be possible. This paper introduces its content presented at 20th Annual Lecture (1989) and the research trends in the latest gravitational wave.展开更多
We aim to numerically study evolution of Alfv′en waves that accompany short-lasting swirl events in a solar magnetic flux-tube that can be a simple model of a magnetic pore or a sunspot. With the use of the FLASH cod...We aim to numerically study evolution of Alfv′en waves that accompany short-lasting swirl events in a solar magnetic flux-tube that can be a simple model of a magnetic pore or a sunspot. With the use of the FLASH code we numerically solve three-dimensional ideal magnetohydrodynamic equations to simulate twists which are implemented at the top of the photosphere in magnetic field lines of the flux-tube. Our numerical results exhibit swirl events and Alfv′en waves with associated clockwise and counterclockwise rotation of magnetic lines, with the largest values of vorticity at the bottom of the chromosphere, and a certain amount of energy flux.展开更多
Standing oscillations with multiple periods have been found in a number of atmospheric struc- tures on the Sun. The ratio of the period of the fundamental to twice the one of its first overtone, P1/2192, is important ...Standing oscillations with multiple periods have been found in a number of atmospheric struc- tures on the Sun. The ratio of the period of the fundamental to twice the one of its first overtone, P1/2192, is important in applications of solar magneto-seismology. We examine how field-aligned flows impact P1/2P2 of standing modes in solar magnetic cylinders. For coronal loops, the flow effects are significant for both fast kink and sausage modes. For kink modes, they reduce P1/2P2 by up to 17% relative to the static case even when the density contrast between the loop and its surroundings approaches infinity. For sausage modes, the reduction in P1/2P2 due to flow is typically ≤ 5.5% compared with the static case. However, the threshold aspect ratio, only above which can trapped sausage modes be supported, may increase dramatically with the flow magnitude. For photospheric tubes, the flow effect on P1/2P2 is not as strong. However, when applied to sausage modes, introducing field-aligned flows offers more possibilities in interpreting the multiple peri- ods that have recently been measured. We conclude that field-aligned flows should be taken into account to help better understand what causes the departure of P1/2P2 from unity.展开更多
Magnetohydrodynamic(MHD) processes are important for the transfer of energy over large scales in plasmas and so are essential to understanding most forms of dynamical activity in the solar atmosphere. The introducti...Magnetohydrodynamic(MHD) processes are important for the transfer of energy over large scales in plasmas and so are essential to understanding most forms of dynamical activity in the solar atmosphere. The introduction of transverse structuring into models for the corona modifies the behavior of MHD waves through processes such as dispersion and mode coupling. Exploiting our understanding of MHD waves with the diagnostic tool of coronal seismology relies upon the development of sufficiently detailed models to account for all the features in observations. The development of realistic models appropriate for highly structured and dynamical plasmas is often beyond the domain of simple mathematical analysis and so numerical methods are employed. This paper reviews recent numerical results for seismology of the solar corona using MHD.展开更多
文摘Gravitational wave is a strain wave of space and this can be also generated by strong magnetic field. The principle of gravitational wave generation using the fluctuation in strain field induced by magnetic field is introduced. Using both foregoing gravitational wave generator and gravitational wave detector (i.e. laser interferometric gravitational wave antenna), the gravitational communication system can be possible. This paper introduces its content presented at 20th Annual Lecture (1989) and the research trends in the latest gravitational wave.
基金supported by the Marie Curie PIRSES-GA-295272-RADIOSUN project
文摘We aim to numerically study evolution of Alfv′en waves that accompany short-lasting swirl events in a solar magnetic flux-tube that can be a simple model of a magnetic pore or a sunspot. With the use of the FLASH code we numerically solve three-dimensional ideal magnetohydrodynamic equations to simulate twists which are implemented at the top of the photosphere in magnetic field lines of the flux-tube. Our numerical results exhibit swirl events and Alfv′en waves with associated clockwise and counterclockwise rotation of magnetic lines, with the largest values of vorticity at the bottom of the chromosphere, and a certain amount of energy flux.
基金supported by the 973 program 2012CB825601the National Natural Science Foundation of China (41174154,41274176,41274178 and 41474149)the Provincial Natural Science Foundation of Shandong (Grant JQ201212)
文摘Standing oscillations with multiple periods have been found in a number of atmospheric struc- tures on the Sun. The ratio of the period of the fundamental to twice the one of its first overtone, P1/2192, is important in applications of solar magneto-seismology. We examine how field-aligned flows impact P1/2P2 of standing modes in solar magnetic cylinders. For coronal loops, the flow effects are significant for both fast kink and sausage modes. For kink modes, they reduce P1/2P2 by up to 17% relative to the static case even when the density contrast between the loop and its surroundings approaches infinity. For sausage modes, the reduction in P1/2P2 due to flow is typically ≤ 5.5% compared with the static case. However, the threshold aspect ratio, only above which can trapped sausage modes be supported, may increase dramatically with the flow magnitude. For photospheric tubes, the flow effect on P1/2P2 is not as strong. However, when applied to sausage modes, introducing field-aligned flows offers more possibilities in interpreting the multiple peri- ods that have recently been measured. We conclude that field-aligned flows should be taken into account to help better understand what causes the departure of P1/2P2 from unity.
基金supported by the European Research Council under the SeismoSun Research Project No. 321141the Marie Curie PIRSES-GA-2011-295272 RadioSun project
文摘Magnetohydrodynamic(MHD) processes are important for the transfer of energy over large scales in plasmas and so are essential to understanding most forms of dynamical activity in the solar atmosphere. The introduction of transverse structuring into models for the corona modifies the behavior of MHD waves through processes such as dispersion and mode coupling. Exploiting our understanding of MHD waves with the diagnostic tool of coronal seismology relies upon the development of sufficiently detailed models to account for all the features in observations. The development of realistic models appropriate for highly structured and dynamical plasmas is often beyond the domain of simple mathematical analysis and so numerical methods are employed. This paper reviews recent numerical results for seismology of the solar corona using MHD.