Consider the following system of coupled Korteweg-de Vries equations, <img src="Edit_81ea1215-e696-403f-9d6c-1449e107359f.bmp" alt="" /><span style="white-space:nowrap;">where...Consider the following system of coupled Korteweg-de Vries equations, <img src="Edit_81ea1215-e696-403f-9d6c-1449e107359f.bmp" alt="" /><span style="white-space:nowrap;">where<em> u</em>, <em>v </em><span style="white-space:nowrap;">⊆</span> <em>W</em><sup>2,2</sup>, 2≤<em>N</em>≤7 and <em>λ</em><sub><em>i</em></sub>,<em>β</em> > 0, <em>β</em> </span>denotes a real coupling parameter. Firstly, we prove the existence of the solutions of a coupled system of Korteweg-de Vries equations using variation approach and minimization techniques on Nehari manifold. Then, we show the multiplicity of the equations by a bifurcation theory which is rare for studying higher order equations.展开更多
文摘Consider the following system of coupled Korteweg-de Vries equations, <img src="Edit_81ea1215-e696-403f-9d6c-1449e107359f.bmp" alt="" /><span style="white-space:nowrap;">where<em> u</em>, <em>v </em><span style="white-space:nowrap;">⊆</span> <em>W</em><sup>2,2</sup>, 2≤<em>N</em>≤7 and <em>λ</em><sub><em>i</em></sub>,<em>β</em> > 0, <em>β</em> </span>denotes a real coupling parameter. Firstly, we prove the existence of the solutions of a coupled system of Korteweg-de Vries equations using variation approach and minimization techniques on Nehari manifold. Then, we show the multiplicity of the equations by a bifurcation theory which is rare for studying higher order equations.